期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Boron-doped lamellar porous carbon supported copper catalyst for dimethyl oxalate hydrogenation
1
作者 Peipei Ai Li Zhang +2 位作者 jinchi Niu huiqing jin Wei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期222-229,共8页
Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased supp... Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased support to construct Cu/B-LPC catalyst for dimethyl oxalate(DMO) hydrogenation. Doping boron could make the B-LPC own more defects on surface and bigger pore size than B-free LPC, which were beneficial to disperse and anchor Cu nanoparticles. Moreover, the interaction between Cu species and B-LPC could be strengthened by the doped B, which not only stabilized the Cu nanoparticles, but also tuned the valence of Cu species to maintain more Cu^(+). Therefore, the B-doped Cu/B-LPC catalyst exhibited stronger hydrogenation ability and obtained higher alcohols selectivity than Cu/LPC, as well as high stability without decrease of DMO conversion and ethylene glycol selectivity even after 300 h of reaction at 240℃. 展开更多
关键词 HYDROGENATION Cu-based catalyst Boron doping Porous carbon Catalyst support ALCOHOL
下载PDF
Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol
2
作者 Peipei Ai huiqing jin +2 位作者 Jie Li Xiaodong Wang Wei Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期186-193,共8页
Dimethyl oxalate(DMO) hydrogenation is a crucial step in the coal to ethylene glycol(CTEG) process.Herein, Cu catalyst supported on fibrous mesoporous silica(Cu/FMS) was synthesized via liquid phase deposition techniq... Dimethyl oxalate(DMO) hydrogenation is a crucial step in the coal to ethylene glycol(CTEG) process.Herein, Cu catalyst supported on fibrous mesoporous silica(Cu/FMS) was synthesized via liquid phase deposition technique and applied for the DMO hydrogenation to EG. The catalyst exhibited a remarkable EG selectivity of 96.95% and maintained its activity without deactivation for 1000 h. Fibers of FMS support and liquid phase deposition technology cooperated to give high dispersion of Cu species in the Cu/FMS catalyst, resulting in a high Cu surface area. The formation of Si—O—Cu during catalyst preparation process increased the Cu^(+)/(Cu^(0)+ Cu^(+)) ratio and enhanced the thermal and valence stability of Cu species.The high Cu^(+) surface area and Cu stability(thermal and valence stability) of the Cu/FMS catalyst were key factors for achieving superior EG selectivity and ultra-high stability. 展开更多
关键词 Stability Cu^(+)surface area Fibrous mesoporous silica CATALYST HYDROGENATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部