期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Conversion of LiPSs Accelerated by Pt-Doped Biomass-Derived Hyphae Carbon Nanobelts as Self-Supporting Hosts for Long-Lifespan Li-S Batteries
1
作者 Fengfeng Han Liwen Fan +4 位作者 Xinzhi Ma huiqing lu lu Li Xitian Zhang Lili Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期49-58,共10页
Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle... Rechargeable Li-S batteries(LSBs)are emerging as an important alternative to lithium-ion batteries(LIBs),owing to their high energy densities and low cost;yet sluggish redox kinetics of LiPSs results in inferior cycle life.Herein,we prepared multifunctional self-supporting hyphae carbon nanobelt(HCNB)as hosts by carbonization of hyphae balls of Rhizopus,which could increase the S loading of the cathode without sacrificing reaction kinetics.Trace platinum(Pt)nanoparticles were introduced into HCNBs(PtHCNBs)by ion-beam sputtering deposition.Based on the X-ray photoelectron spectroscopy analyses,the introduced trace Pt regulated the local electronic states of heteroatoms in HCNBs.Electrochemical kinetics investigation combined with operando Raman measurements revealed the accelerated reaction mechanics of sulfur species.Benefiting from the synergistic catalytic effect and the unique structures,the as-prepared PtHCNB/MWNCT/S cathodes delivered a stable capacity retention of 77%for 400 cycles at 0.5 C with a sulfur loading of 4.6 mg cm^(-2).More importantly,remarkable cycling performance was achieved with an high areal S loading of 7.6 mg cm^(-2).This finding offers a new strategy to prolong the cycle life of LSBs. 展开更多
关键词 high areal capacity high S loading hyphae carbon nanobelt lithium-sulfur battery operando Raman
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部