The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,bioh...The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,biohydrogen stands out due to its environmental sustainability,simple operating environ-ment,and cost advantages.This review focuses on the rational design of catalysts for fermentative hydrogen production.The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively.Various strategies to increase the efficiency of fermentative hydrogen production are summa-rized,and some recent representative works from microbial dark fermentation and photo-fermentation are described.Meanwhile,perspectives and discussions on the rational design of catalysts for fermentative hydrogen production are provided.展开更多
Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high...Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted.展开更多
Industrial production of NH3 from N2 and H2 significantly relies on Haber-Bosch process,which suffers from high energy consume and CO2 emission.As a sustainable and environmentally-benign alternative process,electroch...Industrial production of NH3 from N2 and H2 significantly relies on Haber-Bosch process,which suffers from high energy consume and CO2 emission.As a sustainable and environmentally-benign alternative process,electrochemical artificial N2 fixation at ambient conditions,however,is highly required efficient electrocatalysts.In this study,we demonstrate that hexagonal boron nitride nanosheet (h-BNNS) is able to electrochemically catalyze N2 to NH3.In acidic solution,h-BNNS catalyst attains a high NH3 formation rate of 22.4 μg·h-1·mg-1cat.and a high Faradic efficiency of 4.7% at-0.75 V vs.reversible hydrogen electrode,with excellent stability and durability.Density functional theory calculations reveal that unsaturated boron at the edge site can activate inert N2 molecule and significantly reduce the energy barrier for NH3 fonmation.展开更多
After the Industrial Revolution,the ever-increasing atmospheric CO_(2)concentration has resulted in significant problems for human beings.Nearly all countries in the world are actively taking measures to fight for car...After the Industrial Revolution,the ever-increasing atmospheric CO_(2)concentration has resulted in significant problems for human beings.Nearly all countries in the world are actively taking measures to fight for carbon neutrality.In recent years,negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO_(2)in the atmosphere.This review summarizes the state-of-the-art negative carbon emission technologies,from the artificial enhancement of natural carbon sink technology to the physical,chemical,or biological methods for carbon capture,as well as CO_(2)utilization and conversion.Finally,we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.展开更多
基金W.Z.would like to acknowledge the support from National Natural Science Foundation of China(grant number:22176086)Natural Science Foundation of Jiangsu Province(grant number:BK20210189)+2 种基金State Key laboratory of Pollution Control and Resource Reuse(grant number:PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(grant number:021114380183 and 021114380189)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.Y.L.would like to acknowledge the start-up fund from Washington State University.
文摘The increasingly severe energy crisis has strengthened the determination to develop environmentally friendly energy.And hydrogen has emerged as a candi-date for clean energy.Among many hydrogen generation methods,biohydrogen stands out due to its environmental sustainability,simple operating environ-ment,and cost advantages.This review focuses on the rational design of catalysts for fermentative hydrogen production.The principles of microbial dark fermen-tation and photo-fermentation are elucidated exhaustively.Various strategies to increase the efficiency of fermentative hydrogen production are summa-rized,and some recent representative works from microbial dark fermentation and photo-fermentation are described.Meanwhile,perspectives and discussions on the rational design of catalysts for fermentative hydrogen production are provided.
基金support from the China Postdoctoral Science Foundation(2022M711553).Y.W.would like to acknowledge the support from the National Natural Science Foundation of China(22171132)the Innovation Fund from Nanjing University(020514913419)+5 种基金the Program for Innovative Talents and Entrepreneurs in Jiangsu(020513006012 and 020513006014),and the National Key R&D Program of China(2002YFB3607000).W.Z.would like to acknowledge the support from the National Natural Science Foundation of China(22176086)Natural Science Foundation of Jiangsu Province(BK20210189)State Key Laboratory of Pollution Control and Resource Reuse(PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(021114380183,021114380189 and 021114380199)the Research Funds from the Nanjing Science and Technology Innovation Project for Chinese Scholars Studying Abroad(13006003)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.Y.L.would like to thank the support from the Washington State University startup fund.
文摘Non-precious metal single-atom catalysts(NPM-SACs)with unique electronic structures and coordination environments have gained much attention in electrocatalysis owing to their low cost,high atomic utilization,and high performance.NPM-SACs on carbon support(NPM-SACs/CS)are promising because of the carbon substrate with a large surface area,excellent electrical conductivity,and high chemical stability.This review provides an overview of recent developments in NPM-SACs/CS for the electrocatalytic field.First,the state-of-the-art synthesis methods and advanced characterization techniques of NPM-SACs/CS are discussed in detail.Then,the structural adjustment strategy of NPM-SACs/CS for optimizing electrocatalytic performance is introduced concisely.Furthermore,we provide a comprehensive summary of recent advances in developing NPM-SACs/CS for important electrochemical reactions,including carbon dioxide reduction reaction,hydrogen evolution reaction,oxygen evolution reaction,oxygen reduction reaction,and nitrogen reduction reaction.In the end,the existing challenges and future opportunities of NPM-SACs/CS in the electrocatalytic field are highlighted.
基金National Natural Science Foundation of China (Nos. 21575137, 21775089, and 21375076)Key Research and Development Program of Shandong Province (No. 2015GSF121031)Natural Science Foundation Projects of Shandong Province (Nos. ZR2017JL010, ZR2017QB00& and ZR2017LEE006).
文摘Industrial production of NH3 from N2 and H2 significantly relies on Haber-Bosch process,which suffers from high energy consume and CO2 emission.As a sustainable and environmentally-benign alternative process,electrochemical artificial N2 fixation at ambient conditions,however,is highly required efficient electrocatalysts.In this study,we demonstrate that hexagonal boron nitride nanosheet (h-BNNS) is able to electrochemically catalyze N2 to NH3.In acidic solution,h-BNNS catalyst attains a high NH3 formation rate of 22.4 μg·h-1·mg-1cat.and a high Faradic efficiency of 4.7% at-0.75 V vs.reversible hydrogen electrode,with excellent stability and durability.Density functional theory calculations reveal that unsaturated boron at the edge site can activate inert N2 molecule and significantly reduce the energy barrier for NH3 fonmation.
基金support from National Natural Science Foundation of China(22176086)Natural Science Foundation of Jiangsu Province(BK20210189)+2 种基金State Key Laboratory of Pollution Control and Resource Reuse(PCRR-ZZ-202106)the Fundamental Research Funds for the Central Universities(021114380183,021114380189),China Association for Science and Technology(20220615ZZ08010008)the Research Funds from Frontiers Science Center for Critical Earth Material Cycling of Nanjing University,and Research Funds for Jiangsu Distinguished Professor.H.L.and H.R.would like to acknowledge the support from China Association for Sci-ence and Technology(20220615ZZ08010008).
文摘After the Industrial Revolution,the ever-increasing atmospheric CO_(2)concentration has resulted in significant problems for human beings.Nearly all countries in the world are actively taking measures to fight for carbon neutrality.In recent years,negative carbon emission technologies have attracted much attention due to their ability to reduce or recycle excess CO_(2)in the atmosphere.This review summarizes the state-of-the-art negative carbon emission technologies,from the artificial enhancement of natural carbon sink technology to the physical,chemical,or biological methods for carbon capture,as well as CO_(2)utilization and conversion.Finally,we expound on the challenges and outlook for improving negative carbon emission technology to accelerate the pace of achieving carbon neutrality.