Biofilm reactors,known for utilizing biofilm formation for cell immobilization,offer enhanced biomass concentration and operational stability over traditional planktonic systems.However,the dense nature of biofilms po...Biofilm reactors,known for utilizing biofilm formation for cell immobilization,offer enhanced biomass concentration and operational stability over traditional planktonic systems.However,the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products,making mass transfer efficiency a critical issue in these systems.Recent advancements have unveiled the intricate,heterogeneous architecture of biofilms,contradicting the earlier view of them as uniform,porous structures with consistent mass transfer properties.In this review,we explore six biofilm reactor configurations and their potential combinations,emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance.Furthermore,we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance.This review highlights the role of biofilm reactors in environmental and energy sectors,paving the way for future innovations in biofilm-based technologies and their broader applications.展开更多
Cytoskeleton exists in all eukaryotes and is involved in many significant cytobiological processes, especially the movements and developmental changes of plant cells. The cytoskeleton consists of microtubule (MT), mic...Cytoskeleton exists in all eukaryotes and is involved in many significant cytobiological processes, especially the movements and developmental changes of plant cells. The cytoskeleton consists of microtubule (MT), microfilament (MF), and intermediate filament (IF). MT and MF are vital components of plant cytoskeleton. Crosslinking factor acts as a bridge between MF and MT. They play an important role in cellular life process and have always been a hot topic and key point in plant cytobiology, and the IF is a difficult point in this field. In this paper, the latest research on the cytoskeleton of plants is introduced, which focuses on the structure and dynamics of MT, MF, and IF, and summarizes the crosslinking factors between MT and MF. Also, the paper prospects the future research direction of plant cytoskeleton and the possible research hotspot, which provides a certain reference for people to continue to explore the function of plant cytoskeleton in the future.展开更多
The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW·mm-2, ...The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW·mm-2, 2 min·d-1) on proliferating-cell nuclear antigen (PCNA) damage repair function of wheat seedlings exposed to enhanced UV-B radiation (10.08 kJ·m-2·d-1) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. We explored the transcripts of PCNA in each treatment group using RT-PCR. In addition, total proteins were extracted from the 7-day-old wheat leaves, analyzed by SDS-PAGE and identified by western blot. The results showed that the transcription of PCNA was weakened following UV-B radiation compared to the control. However, when seedlings were subjected to elevated UV-B-damaging radiation followed by He-Ne laser irradiation, the expression of PCNA was signifi-cantly higher than UV-B radiation alone. These results suggest that He-Ne laser has an active role in repairing the UV-B damaging effects. In order to further investigate the function of PCNA, dynamic arrangements of PCNA in wheat root-tip cells were observed with confocal laser scanning microscopy (CLSM). The PCNA was marked fluorescent dimming and strength weakened in en-hanced UV-B radiation (UV-B) compared with the control group (CK) during processing. It shows that PCNA may be involved in the separation of chromosomes.展开更多
VIGS (Virus-induced gene silencing) can effectively silence target genes at the RNA level to investigate their functions. The virus vectors used for silencing are divided into three categories, DNA virus, RNA virus, a...VIGS (Virus-induced gene silencing) can effectively silence target genes at the RNA level to investigate their functions. The virus vectors used for silencing are divided into three categories, DNA virus, RNA virus, and satellite virus, which can be used to silence the target genes in different species based on existing research. The genes used as markers for silencing system identification include PDS and PCNA. VIGS can be applied to some plants, in particular cash crops and fruit trees, to study their disease-resistance genes and genes related to growth and development to provide a basis for improving crop characteristics.展开更多
As an allohexaploid plant,common wheat has a complex gene structure,making it difficult to study its gene function.Virus-induced gene silencing(VIGS)is an important tool for the rapid analysis of plant gene function.I...As an allohexaploid plant,common wheat has a complex gene structure,making it difficult to study its gene function.Virus-induced gene silencing(VIGS)is an important tool for the rapid analysis of plant gene function.In this study,the gene silencing system,namely,barley stripe mosaic virus(BSMV)-VIGS induced by BSMV was used to silence the wheat phytoene desaturase(TaPDS)and actin depolymerization factor(TaADF7)genes and determine the effect of gene silencing on wheat.TaPDS was used as an indicator gene to determine the feasibility of VIGS system,while TaADF7 was used as a test gene to determine its effect on wheat growth.Results showed that the leaves of tobacco and wheat were bleached by the mixture of pCaBS-α,pCaBS-β,and pCaBS-γ::TaPDS,indicating that the TaPDS gene was silenced,and the bleached leaves had physiological activity as determined by trypan blue staining.Therefore,the VIGS system was efficient and available.After the tobacco was treated with pCaBS-α,pCaBS-β,and pCaBS-γ::TaADF7,the viral suspension was obtained.The expression of TaADF7 gene was downregulated after wheat leaves were infected by friction,indicating that the expression of TaADF7 was silenced.Laser confocal scanning microscopy showed that the silencing of TaADF7 enhanced the fluorescence of microfilament skeleton in mesophyll protoplasts and significantly reduced the plant height.Results showed that TaADF7 affected cell division and plant growth by inhibiting microfilament depolymerization.In conclusion,the BSMV-VIGS system was used to silence wheat TaPDS and TaADF7 genes.Bleaching phenomenon was observed in wheat leaves after TaPDS silencing.After TaADF7 silencing,microfilaments in wheat mesophyll cells gathered into coarse bundles,which affected the dynamics of microfilaments and inhibited plant growth.展开更多
Being sessile, plants are continuously exposed to DNA-damaging agents presenting in the environment such as ultraviolet (UV). Sunlight acts as an energy source for photosynthetic plants;hence, avoidance of UV radiatio...Being sessile, plants are continuously exposed to DNA-damaging agents presenting in the environment such as ultraviolet (UV). Sunlight acts as an energy source for photosynthetic plants;hence, avoidance of UV radiations (namely, UV-A, 315 - 400 nm;UV-B, 280 - 315 nm;and UV-C, 1 group: 4.05 kJ•m-2•d-1, B2 group: 10.08 kJ•m-2•d-1, B3 group: 7.05 kJ•m-2•d-1, B4 group: 23.02 kJ•m-2•d-1) treatment wheat, then, explored on the growth of wheat root and wheat root tip cell of chromosome aberration effect. In wheat, root-tip cells were observed with confocal laser scanning microscopy (CLSM), the results showed that low doses of B1 group (4.05 kJ•m-2•d-1) promoted the growth of wheat root and cell mitosis frequency. But high dose of B2 group (10.08 kJ•m-2•d-1), B3 group (17.05 kJ•m-2•d-1), B4 group (23.02 kJ•m-2•d-1) inhibited the growth of wheat root tip, and made crooked growth of wheat root, and inhibited the wheat root tip cell mitotic frequency and processed that induce root tip cells of wheat produce all kinds of aberration of chromosome in the interphase containing “multiple nucleoli nuclei”, “incomplete nuclei”, “long round nuclei”, “bean sprouts nucleus”. In mitosis M period contains “dissociative chromosome”, “chromosome bridge”, “adhesion chromosome”, “multi-bundle divide”, “nuclear anomalies”. After, high doses of enhanced UV-B radiation treatment, most of the cell cycle anomaly concentrated in mitosis interphase. In mitosis M period, with UV-B radiation dose enhanced chromosome aberration rate was on the rise and the aberration types also increasing.展开更多
基金National Natural Science Foundation of China(Nos.52022015,52021004)Natural Science Foundation of Chongqing(Nos.CSTB2023NSCQ-JQX0005,cstc2021ycjh-bgzxm0160)Fundamental Research Funds for the Central Universities(No.2022ZFJH04).
文摘Biofilm reactors,known for utilizing biofilm formation for cell immobilization,offer enhanced biomass concentration and operational stability over traditional planktonic systems.However,the dense nature of biofilms poses challenges for substrate accessibility to cells and the efficient release of products,making mass transfer efficiency a critical issue in these systems.Recent advancements have unveiled the intricate,heterogeneous architecture of biofilms,contradicting the earlier view of them as uniform,porous structures with consistent mass transfer properties.In this review,we explore six biofilm reactor configurations and their potential combinations,emphasizing how the spatial arrangement of biofilms within reactors influences mass transfer efficiency and overall reactor performance.Furthermore,we discuss how to apply artificial intelligence in processing biofilm measurement data and predicting reactor performance.This review highlights the role of biofilm reactors in environmental and energy sectors,paving the way for future innovations in biofilm-based technologies and their broader applications.
文摘Cytoskeleton exists in all eukaryotes and is involved in many significant cytobiological processes, especially the movements and developmental changes of plant cells. The cytoskeleton consists of microtubule (MT), microfilament (MF), and intermediate filament (IF). MT and MF are vital components of plant cytoskeleton. Crosslinking factor acts as a bridge between MF and MT. They play an important role in cellular life process and have always been a hot topic and key point in plant cytobiology, and the IF is a difficult point in this field. In this paper, the latest research on the cytoskeleton of plants is introduced, which focuses on the structure and dynamics of MT, MF, and IF, and summarizes the crosslinking factors between MT and MF. Also, the paper prospects the future research direction of plant cytoskeleton and the possible research hotspot, which provides a certain reference for people to continue to explore the function of plant cytoskeleton in the future.
文摘The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW·mm-2, 2 min·d-1) on proliferating-cell nuclear antigen (PCNA) damage repair function of wheat seedlings exposed to enhanced UV-B radiation (10.08 kJ·m-2·d-1) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. We explored the transcripts of PCNA in each treatment group using RT-PCR. In addition, total proteins were extracted from the 7-day-old wheat leaves, analyzed by SDS-PAGE and identified by western blot. The results showed that the transcription of PCNA was weakened following UV-B radiation compared to the control. However, when seedlings were subjected to elevated UV-B-damaging radiation followed by He-Ne laser irradiation, the expression of PCNA was signifi-cantly higher than UV-B radiation alone. These results suggest that He-Ne laser has an active role in repairing the UV-B damaging effects. In order to further investigate the function of PCNA, dynamic arrangements of PCNA in wheat root-tip cells were observed with confocal laser scanning microscopy (CLSM). The PCNA was marked fluorescent dimming and strength weakened in en-hanced UV-B radiation (UV-B) compared with the control group (CK) during processing. It shows that PCNA may be involved in the separation of chromosomes.
文摘VIGS (Virus-induced gene silencing) can effectively silence target genes at the RNA level to investigate their functions. The virus vectors used for silencing are divided into three categories, DNA virus, RNA virus, and satellite virus, which can be used to silence the target genes in different species based on existing research. The genes used as markers for silencing system identification include PDS and PCNA. VIGS can be applied to some plants, in particular cash crops and fruit trees, to study their disease-resistance genes and genes related to growth and development to provide a basis for improving crop characteristics.
基金supported by Natural Science Foundation of China(NSFC31900251)Postgraduate Course in Dual Language Foundation of Shanxi Normal University(YJSSY201902).
文摘As an allohexaploid plant,common wheat has a complex gene structure,making it difficult to study its gene function.Virus-induced gene silencing(VIGS)is an important tool for the rapid analysis of plant gene function.In this study,the gene silencing system,namely,barley stripe mosaic virus(BSMV)-VIGS induced by BSMV was used to silence the wheat phytoene desaturase(TaPDS)and actin depolymerization factor(TaADF7)genes and determine the effect of gene silencing on wheat.TaPDS was used as an indicator gene to determine the feasibility of VIGS system,while TaADF7 was used as a test gene to determine its effect on wheat growth.Results showed that the leaves of tobacco and wheat were bleached by the mixture of pCaBS-α,pCaBS-β,and pCaBS-γ::TaPDS,indicating that the TaPDS gene was silenced,and the bleached leaves had physiological activity as determined by trypan blue staining.Therefore,the VIGS system was efficient and available.After the tobacco was treated with pCaBS-α,pCaBS-β,and pCaBS-γ::TaADF7,the viral suspension was obtained.The expression of TaADF7 gene was downregulated after wheat leaves were infected by friction,indicating that the expression of TaADF7 was silenced.Laser confocal scanning microscopy showed that the silencing of TaADF7 enhanced the fluorescence of microfilament skeleton in mesophyll protoplasts and significantly reduced the plant height.Results showed that TaADF7 affected cell division and plant growth by inhibiting microfilament depolymerization.In conclusion,the BSMV-VIGS system was used to silence wheat TaPDS and TaADF7 genes.Bleaching phenomenon was observed in wheat leaves after TaPDS silencing.After TaADF7 silencing,microfilaments in wheat mesophyll cells gathered into coarse bundles,which affected the dynamics of microfilaments and inhibited plant growth.
文摘Being sessile, plants are continuously exposed to DNA-damaging agents presenting in the environment such as ultraviolet (UV). Sunlight acts as an energy source for photosynthetic plants;hence, avoidance of UV radiations (namely, UV-A, 315 - 400 nm;UV-B, 280 - 315 nm;and UV-C, 1 group: 4.05 kJ•m-2•d-1, B2 group: 10.08 kJ•m-2•d-1, B3 group: 7.05 kJ•m-2•d-1, B4 group: 23.02 kJ•m-2•d-1) treatment wheat, then, explored on the growth of wheat root and wheat root tip cell of chromosome aberration effect. In wheat, root-tip cells were observed with confocal laser scanning microscopy (CLSM), the results showed that low doses of B1 group (4.05 kJ•m-2•d-1) promoted the growth of wheat root and cell mitosis frequency. But high dose of B2 group (10.08 kJ•m-2•d-1), B3 group (17.05 kJ•m-2•d-1), B4 group (23.02 kJ•m-2•d-1) inhibited the growth of wheat root tip, and made crooked growth of wheat root, and inhibited the wheat root tip cell mitotic frequency and processed that induce root tip cells of wheat produce all kinds of aberration of chromosome in the interphase containing “multiple nucleoli nuclei”, “incomplete nuclei”, “long round nuclei”, “bean sprouts nucleus”. In mitosis M period contains “dissociative chromosome”, “chromosome bridge”, “adhesion chromosome”, “multi-bundle divide”, “nuclear anomalies”. After, high doses of enhanced UV-B radiation treatment, most of the cell cycle anomaly concentrated in mitosis interphase. In mitosis M period, with UV-B radiation dose enhanced chromosome aberration rate was on the rise and the aberration types also increasing.