This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design co...This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.展开更多
Activities and physical effort have been commonly estimated using a metabolic rate through indirect calorimetry to capture breath information.The physical effort represents the work hardness used to optimize wearable ...Activities and physical effort have been commonly estimated using a metabolic rate through indirect calorimetry to capture breath information.The physical effort represents the work hardness used to optimize wearable robotic systems.Thus,personalization and rapid optimization of the effort are critical.Although respirometry is the gold standard for estimating metabolic costs,this method requires a heavy,bulky,and rigid system,limiting the system’s field deployability.Here,this paper reports a soft,flexible bioelectronic system that integrates a wearable ankle-foot exoskeleton,used to estimate metabolic costs and physical effort,demonstrating the potential for real-time wearable robot adjustments based on biofeedback.Data from a set of activities,including walking,running,and squatting with the biopatch and exoskeleton,determines the relationship between metabolic costs and heart rate variability root mean square of successive differences(HRV-RMSSD)(R=−0.758).Collectively,the exoskeleton-integrated wearable system shows potential to develop a field-deployable exoskeleton platform that can measure wireless real-time physiological signals.展开更多
基金the NSF CCSS-2152638 and the IEN Center Grant from the Institute for Electronics and Nanotechnology at Georgia Tech.
文摘This review summarizes recent progress in developing wireless,batteryless,fully implantable biomedical devices for real-time continuous physiological signal monitoring,focusing on advancing human health care.Design considerations,such as biological constraints,energy sourcing,and wireless communication,are discussed in achieving the desired performance of the devices and enhanced interface with human tissues.In addition,we review the recent achievements in materials used for developing implantable systems,emphasizing their importance in achieving multi-functionalities,biocompatibility,and hemocompatibility.The wireless,batteryless devices offer minimally invasive device insertion to the body,enabling portable health monitoring and advanced disease diagnosis.Lastly,we summarize the most recent practical applications of advanced implantable devices for human health care,highlighting their potential for immediate commercialization and clinical uses.
基金the National Science Foundation/the Centers for Disease Control and Prevention(grant NRI‐2024742)supported by the IEN Center Grant from the Georgia Tech Institute for Electronics and Nanotechnologysupported by the National Science Foundation(grant ECCS-2025462).
文摘Activities and physical effort have been commonly estimated using a metabolic rate through indirect calorimetry to capture breath information.The physical effort represents the work hardness used to optimize wearable robotic systems.Thus,personalization and rapid optimization of the effort are critical.Although respirometry is the gold standard for estimating metabolic costs,this method requires a heavy,bulky,and rigid system,limiting the system’s field deployability.Here,this paper reports a soft,flexible bioelectronic system that integrates a wearable ankle-foot exoskeleton,used to estimate metabolic costs and physical effort,demonstrating the potential for real-time wearable robot adjustments based on biofeedback.Data from a set of activities,including walking,running,and squatting with the biopatch and exoskeleton,determines the relationship between metabolic costs and heart rate variability root mean square of successive differences(HRV-RMSSD)(R=−0.758).Collectively,the exoskeleton-integrated wearable system shows potential to develop a field-deployable exoskeleton platform that can measure wireless real-time physiological signals.