Entacapone,a catechol-O-methyltransferase inhibitor,can strengthen the therapeutic effects of levodopa on the treatment of Parkinson’s disease.However,few studies are reported on whether entacapone can affect hippoca...Entacapone,a catechol-O-methyltransferase inhibitor,can strengthen the therapeutic effects of levodopa on the treatment of Parkinson’s disease.However,few studies are reported on whether entacapone can affect hippocampal neurogenesis in mice.To investigate the effects of entacapone,a modulator of dopamine,on proliferating cells and immature neurons in the mouse hippocampal dentate gyrus,60 mice(7 weeks old)were randomly divided into a vehicle-treated group and the groups treated with 10,50,or 200 mg/kg entacapone.The results showed that 50 and 200 mg/kg entacapone increased the exploration time for novel object recognition.Immunohistochemical staining results revealed that after entacapone treatment,the numbers of Ki67-positive proliferating cells,doublecortin-positive immature neurons,and phosphorylated cAMP response element-binding protein(pCREB)-positive cells were significantly increased.Western blot analysis results revealed that treatment with tyrosine kinase receptor B(TrkB)receptor antagonist significantly decreased the exploration time for novel object recognition and inhibited the expression of phosphorylated TrkB and brain-derived neurotrophic factor(BDNF).Entacapone treatment antagonized the effects of TrkB receptor antagonist.These results suggest that entacapone treatment promoted hippocampal neurogenesis and improved memory function through activating the BDNF-TrkB-pCREB pathway.This study was approved by the Institutional Animal Care and Use Committee of Seoul National University(approval No.SNU-130730-1)on February 24,2014.展开更多
In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin(ferritin-H), and transferrin in the gerbil hippoc...In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin(ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIP)(NRF-2016R1A2B4009156)the Promising-Pioneering Researcher Program through Seoul National University(SNU)in 2015 and by the Research Institute for Veterinary Science,Seoul National University.
文摘Entacapone,a catechol-O-methyltransferase inhibitor,can strengthen the therapeutic effects of levodopa on the treatment of Parkinson’s disease.However,few studies are reported on whether entacapone can affect hippocampal neurogenesis in mice.To investigate the effects of entacapone,a modulator of dopamine,on proliferating cells and immature neurons in the mouse hippocampal dentate gyrus,60 mice(7 weeks old)were randomly divided into a vehicle-treated group and the groups treated with 10,50,or 200 mg/kg entacapone.The results showed that 50 and 200 mg/kg entacapone increased the exploration time for novel object recognition.Immunohistochemical staining results revealed that after entacapone treatment,the numbers of Ki67-positive proliferating cells,doublecortin-positive immature neurons,and phosphorylated cAMP response element-binding protein(pCREB)-positive cells were significantly increased.Western blot analysis results revealed that treatment with tyrosine kinase receptor B(TrkB)receptor antagonist significantly decreased the exploration time for novel object recognition and inhibited the expression of phosphorylated TrkB and brain-derived neurotrophic factor(BDNF).Entacapone treatment antagonized the effects of TrkB receptor antagonist.These results suggest that entacapone treatment promoted hippocampal neurogenesis and improved memory function through activating the BDNF-TrkB-pCREB pathway.This study was approved by the Institutional Animal Care and Use Committee of Seoul National University(approval No.SNU-130730-1)on February 24,2014.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,No.2015R1D1A1A01059980partially supported by the Research Institute for Veterinary Science,Seoul National University
文摘In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin(ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.