期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Specially shaped Bessel-like self-accelerating beams along predesigned trajectories 被引量:4
1
作者 Juanying Zhao i.d.chremmos +5 位作者 Ze Zhang Yi Hu Daohong Song Peng Zhang N.K.Efremidis Zhigang Chen 《Science Bulletin》 SCIE EI CAS CSCD 2015年第13期1157-1169,共13页
Over the past several years, spatially shaped self-accelerating beams along different trajectories have been studied extensively. Due to their useful properties such as resistance to diffraction, self-healing, and sel... Over the past several years, spatially shaped self-accelerating beams along different trajectories have been studied extensively. Due to their useful properties such as resistance to diffraction, self-healing, and selfbending even in free space, these beams have attracted great attention with many proposed applications. Interestingly, some of these beams could be designed with controllable spatial profiles and thus propagate along various desired trajectories such as parabolic, snake-like, hyperbolic, hyperbolic secant, three-dimensional spiraling, and even self-propelling trajectories. Experimentally, suchbeams are realized typically by using a spatial light modulator so as to imprint a desired phase distribution on a Gaussian-like input wave front propagating under paraxial or nonparaxial conditions. In this paper, we provide a brief overview of our recent work on specially shaped self-accelerating beams, including Bessel-like, breathing Bessellike, and vortex Bessel-like beams. In addition, we propose and demonstrate a new type of dynamical Bessel-like beams that can exhibit not only self-accelerating but also self-propelling during propagation. Both theoretical and experimental results are presented along with a brief discussion of potential applications. 展开更多
关键词 Airy beams . Bessel beams . Vortexbeams - Nondiffracting beams . Self-acceleratingSelf-healing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部