Two-phase equilibria between the ferromagnetic fcc and the paramagnetic fcc phase from 800 ℃ to 900 ℃ in the Co-rich region have been detected by the diffusion couple technique. Two phase separation region of the fc...Two-phase equilibria between the ferromagnetic fcc and the paramagnetic fcc phase from 800 ℃ to 900 ℃ in the Co-rich region have been detected by the diffusion couple technique. Two phase separation region of the fcc has been confirmed along the Curie temperature.The phase equilibria including the present results and the thermodynamic data of the Co-Cr system reported in the literature were analyzed on the basis of the thermodynamic evaluation. A set of thermodynamic values for the liquid, fcc, hcp, bcc, sigma phases was obtained. The calculated phase equilibria were in good agreement with most of the experimental data.展开更多
Computational thermodynamics and kinetics were used to design the Pb-free micro-solders for replacing the conventional Sn-Pb solders because of the health and environmental safety problem. On the basis of CALPHAD (Cal...Computational thermodynamics and kinetics were used to design the Pb-free micro-solders for replacing the conventional Sn-Pb solders because of the health and environmental safety problem. On the basis of CALPHAD (Calculation of Phase Diagrams) method we can easily calculate properties such as the liquidus projection, isothermal and vertical sectional diagrams and phase fraction in multi-component system including Ag, Bi, Cu, In, Sb, Sn, Zn and Pb elements. In addition, other related information such as the surface tension, viscosity of the liquid phase and solidification simulation can also be obtained. DICTRA (Diffusion Controlled Transformation) software was used to simulate the interfacial reactions between substrate and Pb-free solders, which can easily give the information on the growth of intermetallic compounds and moving speed of interface between substrate and solders etc.展开更多
The Cu-Fe base alloys with liquid immiscible were prepared by gas atomization technique and conventional solidification process, the self-assemble composite microstructures in powders and bulk materials can be obtaine...The Cu-Fe base alloys with liquid immiscible were prepared by gas atomization technique and conventional solidification process, the self-assemble composite microstructures in powders and bulk materials can be obtained under gravity conditions, respectively, and the minor liquid phase always forms the center of composite microstructure. It is shown that the formation of the core-type macroscopic morphology is strongly connected with the existence of a stable miscibility gap of the liquid phase in the Cu-Fe base alloys. This result can be explained by a mechanism that the minor droplets as the second phase are forced to move into the thermal center due to Marangoni motion, which is caused by the temperature dependence of interfacial energy between two liquid phases.展开更多
It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For inst...It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.展开更多
The Ni-Sb binary alloy system was thermodynamically assessed using CALPHAD approach in this article. Excess Gibbs energies of solution phases, liquid and fcc phases, were formulated using the Redlich-Kister expression...The Ni-Sb binary alloy system was thermodynamically assessed using CALPHAD approach in this article. Excess Gibbs energies of solution phases, liquid and fcc phases, were formulated using the Redlich-Kister expression. The intermediate phases were modeled by the sublattice model with (Ni,Va)0.5(Ni,Sb)0.25(Ni)0.25 for Ni3Sb_HT phase and (Ni,Va)0.3333(Sb)0.3333(Ni,Va)0.3333 for NiSb phase. The other phases including Ni3Sb, Ni7Sb3, and NiSb2 were treated as stoichiometric compound owing to their narrow composition ranges. Based on the reported thermodynamic properties and phase diagram data, the thermodynamic parameters of these phases were optimized, and the obtained values can reproduce the available experimental data well.展开更多
Ferromagnetic shape memory alloys (FSMAs) such as NiMnGa, FePd and FePt are attractive as a new magnetic actuator material. They show a large magnetic-field-induced strain of 3% 9% due to the variant rearrangement. ...Ferromagnetic shape memory alloys (FSMAs) such as NiMnGa, FePd and FePt are attractive as a new magnetic actuator material. They show a large magnetic-field-induced strain of 3% 9% due to the variant rearrangement. Recently, the present authors have reported that in the Ni-Ga-Fe alloy the martensitic transformationfrom the B2 and/or the L21 structures into a seven-layer or five-layer modulated structure occurs upon cooling. In this alloy system, however, it is impossible to obtain a martensite phase at RT with a Curie temperature (TC) higher than 100 ℃. In this work,the effects of substitution of Co for Ni on the martensitic and magnetic transformations,crystal structures and phase equilibria in Ni-Ga-Fe alloys were studied.Ni-Ga-Fe-Co alloys were prepared by induction melting under an argon atmosphere.Small pieces of specimens were taken from the ingot and homogenized at 1433 K for 24 h followed by quenching in water. The obtained specimens were aged at 773 K for 24 h and then quenched. The compositions of each phase were determined by energy dispersion X-ray spectroscopy (EDX). The martensitic transformation temperatures and TC were measured by differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. The crystal structure of martensite phase was observed by X-ray diffractmeter (XRD) and transmission electron microscope (TEM).The Curie temperature TC was increased with increasing Co content while the martensitic transformation temperature slightly decreased. In the Ni<sup>54-x Ga<sup>27 Fe<sup>19 Cox ,TC increases from 303 K to 408 K with increasing Co content from x=0 to x=6. The crystal structure of the martensite phase and the phase equiribria in the Ni-Fe-Ga-Co alloys will be also presented.展开更多
Shape memory alloys (SMAs) are well-known as high damping materials. Recently,we have reported that the Cu-Al-Mn SMAs show a high internal friction as well as the other SMAs such as Ni-Ti, Cu-Zn-Al SMAs. Since the Cu-...Shape memory alloys (SMAs) are well-known as high damping materials. Recently,we have reported that the Cu-Al-Mn SMAs show a high internal friction as well as the other SMAs such as Ni-Ti, Cu-Zn-Al SMAs. Since the Cu-Al-Mn-based SMAs possess an excellent cold-workability, a strong recrystallization texture can be formed by thermomechanical treatment. The present authors demonstrated that the texture control is considerably effective for improving the SM properties and especially, in the Cu-Al-Mn-Ni SMAs with a strong {112}<110> recrystallization texture, a large pseudoelastic (PE) of about 7% can be obtained. Such a texture control is expected to enhance the damping capacity in the Cu-Al-Mn-based SMAs as well as PE. In this study, the effect of texture on the internal friction in Cu-Al-Mn and Cu-Al-Mn-Ni SMAs was investigated by tensile testing mode of Dynamic Mechanical Spectrometer (DMS). In sheet specimens with the {112}<110> texture, value of dynamic damping tanφ depends on the loading direction and an excellent damping capacity of tanφ= 0.1 can be obtained at the rolling direction in the martensite phase condition. Moreover, these Cu-Al-Mn-based SMAs show a high tensile strength over 600 MPa in the martensite phase. The present Cu-Al-Mn-based SMAs should have a great potential as the damping materials.展开更多
It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α...It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.展开更多
It is known that pure Co undergoes martensitic transformation from γ phase (fcc) to ε phase (hcp) by the movement of a/6<112> Shockley partial dislocations at around 400 ℃, however, there have been few system...It is known that pure Co undergoes martensitic transformation from γ phase (fcc) to ε phase (hcp) by the movement of a/6<112> Shockley partial dislocations at around 400 ℃, however, there have been few systematic works on the SM effect in Co and Co-based alloys. In this study, the fcc/hcp rnartensitic transformation and the SM effect were investigated in Co-A1 binary alloys(mole fraction of Al=0-16%). The γ/ε rnartensitic transformation temperatures were found from the DSC measurements to decrease with increasing Al content, while the transformation temperature hystereses were observed to increase from 60℃ at x(Al)=0 to 150℃ at x(Al) = 16%. The SM effect evaluated by a conventional bending test was enhanced by the addition of Al over 4% (mole fraction) and Co-Al alloys containing over 10%(mole fraction) exhibit a good SM effect associated with the hcpfee → reverse transformation above 200℃. The SM effect was significantly improved by precipitation of β (I32) phase and the max[real shape recovery strain of 2.2 % was obtained, which can be explained by precipitation hardening. The crystallographic orientations between the β, εand γ phases were also determined. Finally, the magnetic properties were investigated and it was found that the Curie temperature and saturation magnetization of Co-14% Al(mole fraction) are 690℃ and 120 emu/g, respectively. It is concluded that the Co-A1 alloys hold promise as new high-temperature and ferromagnetic SM alloys.展开更多
Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical ...Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical calculation on electronic band structure that some Heusler-type alloys Co2XAl (X: Cr and Mn) should be a new type of spinelectronic materials so-called half-metallic ferromagnet. In the case of the Co2CrAl, however, magnetic properties expected from the theoretical work can not been experimentally obtained and the reason has been still unknown. On the other hand, a tunneling magnetoresistance (TMR) effect due to the half-metallic properties was reported in Co2(Cr<sup>0.6 Fe<sup>0.4 )Al alloy, but not the Co2CrAl alloy.In the present paper, it is reported that this discrepancy with the theoretical work in the Co2CrAl alloy is bought about by phase separation between A2 and B2 phases, and that the substitution of Fe for Cr can suppress the precipitation of A2 phase in the B2 phase. Such a phase separation is originally due to the miscibility gap between CoAl and Cr formed in the Co-Al-Cr ternary system as well as that reported by Hao et al. in the Ni-Co-Al-Fe system.展开更多
A materials design tool for developing Pb-free soldering alloys in electronic package was developed based on comprehensive experimental data of phase equilibria and thermodynamic properties data accumulated with the C...A materials design tool for developing Pb-free soldering alloys in electronic package was developed based on comprehensive experimental data of phase equilibria and thermodynamic properties data accumulated with the CALPHAD (calculation of phase diagrams) method and contains 10 elements,namely,Ag,Au,Bi,Cu,In,Ni,Sb,Sn,Zn and Pb.It can handle the calculation of phase diagrams in all combinations of these elements and all composition ranges.In addition,based on this tool,the liquidus,solidus,phase fractions and constitutions,equilibrium and non-equilibrium solidification behavior,surface tension and viscosity of liquid,diffusion reactions and microstructural evolution,etc.can be predicted.Typical examples of the calculation and application of this tool are presented.The design tool is expected to be a powerful tool for the development of Pb-free solders,as well as for promoting the understanding of the interfacial phenomena between Cu substrate and Pb-free solders in electronic packaging technology.展开更多
文摘Two-phase equilibria between the ferromagnetic fcc and the paramagnetic fcc phase from 800 ℃ to 900 ℃ in the Co-rich region have been detected by the diffusion couple technique. Two phase separation region of the fcc has been confirmed along the Curie temperature.The phase equilibria including the present results and the thermodynamic data of the Co-Cr system reported in the literature were analyzed on the basis of the thermodynamic evaluation. A set of thermodynamic values for the liquid, fcc, hcp, bcc, sigma phases was obtained. The calculated phase equilibria were in good agreement with most of the experimental data.
文摘Computational thermodynamics and kinetics were used to design the Pb-free micro-solders for replacing the conventional Sn-Pb solders because of the health and environmental safety problem. On the basis of CALPHAD (Calculation of Phase Diagrams) method we can easily calculate properties such as the liquidus projection, isothermal and vertical sectional diagrams and phase fraction in multi-component system including Ag, Bi, Cu, In, Sb, Sn, Zn and Pb elements. In addition, other related information such as the surface tension, viscosity of the liquid phase and solidification simulation can also be obtained. DICTRA (Diffusion Controlled Transformation) software was used to simulate the interfacial reactions between substrate and Pb-free solders, which can easily give the information on the growth of intermetallic compounds and moving speed of interface between substrate and solders etc.
文摘The Cu-Fe base alloys with liquid immiscible were prepared by gas atomization technique and conventional solidification process, the self-assemble composite microstructures in powders and bulk materials can be obtained under gravity conditions, respectively, and the minor liquid phase always forms the center of composite microstructure. It is shown that the formation of the core-type macroscopic morphology is strongly connected with the existence of a stable miscibility gap of the liquid phase in the Cu-Fe base alloys. This result can be explained by a mechanism that the minor droplets as the second phase are forced to move into the thermal center due to Marangoni motion, which is caused by the temperature dependence of interfacial energy between two liquid phases.
文摘It is well known that the magnetic properties such as the Curie temperature Tmag <sub>C and the mean magnetic moment β of ordered compounds have different values from those of the disordered solutions. For instance, both Tmag c and β of the Ni3Pt (L12) and NiPt (L10) and Tmag <sub>c of the CoPt (L10) and CoPt3 (L12) ordered compounds are strongly depressed due to the ordering compared with those of the metastable disordered Ni-Pt and Co-Pt alloys. On the other hand, the γ’-FeNi3 (L12) and the α’-FeCo (B2) ordered compounds have higher Tmag <sub>c and β values comparing with the disordered solution phases, γ (A1) and α (A2), respectively. In consequence, the stability of the ordered phase is depressed or enhanced due to the interaction between the chemical and magnetic ordering caused by the decrease or increase of Tmag <sub>c and β values. The purpose of this study is to investigate the effect of the interaction between the chemical and the magnetic ordering on the phase equilibria in the Fe-X(X=Al, Co, Ni, Rh, Si) binary systems.The Gibbs energy of the α(A2), γ(A1) and liquid phases is described by a sub-regular solution approximation. The ordering contribution to the Gibbs energy ,ΔGorder <sub>m, and deviations of magnetic properties, ΔTmag <sub>c and Δβ, of the ordered compounds, FeAl (B2), Fe3Al (D03), FeCo (B2), FeRh (B2), FeSi (B2), Fe3Si (D03) and FeNi3 (L12) is introduced by the split compound energy formalism. Effect of the interaction between the chemical ordering, B2, D03 and L12 and the magnetic ordering on the phase equilibria will be discussed according to the calculated phase diagrams of the Fe-X binary systems.
基金the National Natu-ral Science Foundation of China (Nos. 50601001 and 50771105)
文摘The Ni-Sb binary alloy system was thermodynamically assessed using CALPHAD approach in this article. Excess Gibbs energies of solution phases, liquid and fcc phases, were formulated using the Redlich-Kister expression. The intermediate phases were modeled by the sublattice model with (Ni,Va)0.5(Ni,Sb)0.25(Ni)0.25 for Ni3Sb_HT phase and (Ni,Va)0.3333(Sb)0.3333(Ni,Va)0.3333 for NiSb phase. The other phases including Ni3Sb, Ni7Sb3, and NiSb2 were treated as stoichiometric compound owing to their narrow composition ranges. Based on the reported thermodynamic properties and phase diagram data, the thermodynamic parameters of these phases were optimized, and the obtained values can reproduce the available experimental data well.
文摘Ferromagnetic shape memory alloys (FSMAs) such as NiMnGa, FePd and FePt are attractive as a new magnetic actuator material. They show a large magnetic-field-induced strain of 3% 9% due to the variant rearrangement. Recently, the present authors have reported that in the Ni-Ga-Fe alloy the martensitic transformationfrom the B2 and/or the L21 structures into a seven-layer or five-layer modulated structure occurs upon cooling. In this alloy system, however, it is impossible to obtain a martensite phase at RT with a Curie temperature (TC) higher than 100 ℃. In this work,the effects of substitution of Co for Ni on the martensitic and magnetic transformations,crystal structures and phase equilibria in Ni-Ga-Fe alloys were studied.Ni-Ga-Fe-Co alloys were prepared by induction melting under an argon atmosphere.Small pieces of specimens were taken from the ingot and homogenized at 1433 K for 24 h followed by quenching in water. The obtained specimens were aged at 773 K for 24 h and then quenched. The compositions of each phase were determined by energy dispersion X-ray spectroscopy (EDX). The martensitic transformation temperatures and TC were measured by differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. The crystal structure of martensite phase was observed by X-ray diffractmeter (XRD) and transmission electron microscope (TEM).The Curie temperature TC was increased with increasing Co content while the martensitic transformation temperature slightly decreased. In the Ni<sup>54-x Ga<sup>27 Fe<sup>19 Cox ,TC increases from 303 K to 408 K with increasing Co content from x=0 to x=6. The crystal structure of the martensite phase and the phase equiribria in the Ni-Fe-Ga-Co alloys will be also presented.
文摘Shape memory alloys (SMAs) are well-known as high damping materials. Recently,we have reported that the Cu-Al-Mn SMAs show a high internal friction as well as the other SMAs such as Ni-Ti, Cu-Zn-Al SMAs. Since the Cu-Al-Mn-based SMAs possess an excellent cold-workability, a strong recrystallization texture can be formed by thermomechanical treatment. The present authors demonstrated that the texture control is considerably effective for improving the SM properties and especially, in the Cu-Al-Mn-Ni SMAs with a strong {112}<110> recrystallization texture, a large pseudoelastic (PE) of about 7% can be obtained. Such a texture control is expected to enhance the damping capacity in the Cu-Al-Mn-based SMAs as well as PE. In this study, the effect of texture on the internal friction in Cu-Al-Mn and Cu-Al-Mn-Ni SMAs was investigated by tensile testing mode of Dynamic Mechanical Spectrometer (DMS). In sheet specimens with the {112}<110> texture, value of dynamic damping tanφ depends on the loading direction and an excellent damping capacity of tanφ= 0.1 can be obtained at the rolling direction in the martensite phase condition. Moreover, these Cu-Al-Mn-based SMAs show a high tensile strength over 600 MPa in the martensite phase. The present Cu-Al-Mn-based SMAs should have a great potential as the damping materials.
文摘It is well known that the morphologies of the α’ martensite formed from the γ phase in ferrous alloys are classified into five types of lath, butterfly, (225)A type plate,lenticular and thin-plate. Among those α’ martensites, only the thin-plate martensite,which is characterized by containing a high density of transformation twins, has a potential of exhibiting a perfect shape memory (SM) effect.Recently the present authors found in Fe-Ni-Si alloys that the thin-plate martensite is formed by the introduction of fine and coherent γ’-(Ni,Fe)3Si particles with a L12 ordered structure in the austenite matrix due to ausaging. In the present study, the SM properties of the ausaged Fe-Ni-Si alloys with the thin-plate martensite are investigated by a conventional bending-test. The effects of the addition of Co to the Fe-Ni-Si alloys on the martensitic transformation and the SM properties are also investigated. It is shown that while the ausaged Fe-Ni-Si ternary alloys exhibit an imperfect SM effect due to reverse transformation from stress-induced thin-plate martensite to austenite, the SM properties are improved by the addition of Co. An almost perfect SM effect is confirmed in the Fe-Ni-Si-Co alloys by heating to 1 100 ℃ after deformation at -196 ℃.
文摘It is known that pure Co undergoes martensitic transformation from γ phase (fcc) to ε phase (hcp) by the movement of a/6<112> Shockley partial dislocations at around 400 ℃, however, there have been few systematic works on the SM effect in Co and Co-based alloys. In this study, the fcc/hcp rnartensitic transformation and the SM effect were investigated in Co-A1 binary alloys(mole fraction of Al=0-16%). The γ/ε rnartensitic transformation temperatures were found from the DSC measurements to decrease with increasing Al content, while the transformation temperature hystereses were observed to increase from 60℃ at x(Al)=0 to 150℃ at x(Al) = 16%. The SM effect evaluated by a conventional bending test was enhanced by the addition of Al over 4% (mole fraction) and Co-Al alloys containing over 10%(mole fraction) exhibit a good SM effect associated with the hcpfee → reverse transformation above 200℃. The SM effect was significantly improved by precipitation of β (I32) phase and the max[real shape recovery strain of 2.2 % was obtained, which can be explained by precipitation hardening. The crystallographic orientations between the β, εand γ phases were also determined. Finally, the magnetic properties were investigated and it was found that the Curie temperature and saturation magnetization of Co-14% Al(mole fraction) are 690℃ and 120 emu/g, respectively. It is concluded that the Co-A1 alloys hold promise as new high-temperature and ferromagnetic SM alloys.
文摘Information on phase equilibria in the Co-Al based systems which are related to some magnetic and heat resistance materials is important for their microstructural control. Recently, it was proposed with a theoretical calculation on electronic band structure that some Heusler-type alloys Co2XAl (X: Cr and Mn) should be a new type of spinelectronic materials so-called half-metallic ferromagnet. In the case of the Co2CrAl, however, magnetic properties expected from the theoretical work can not been experimentally obtained and the reason has been still unknown. On the other hand, a tunneling magnetoresistance (TMR) effect due to the half-metallic properties was reported in Co2(Cr<sup>0.6 Fe<sup>0.4 )Al alloy, but not the Co2CrAl alloy.In the present paper, it is reported that this discrepancy with the theoretical work in the Co2CrAl alloy is bought about by phase separation between A2 and B2 phases, and that the substitution of Fe for Cr can suppress the precipitation of A2 phase in the B2 phase. Such a phase separation is originally due to the miscibility gap between CoAl and Cr formed in the Co-Al-Cr ternary system as well as that reported by Hao et al. in the Ni-Co-Al-Fe system.
基金supported by the National Natural Science Foundation of China (Grant No.50425101)the Ministry of Science and Technology,P.R.China (Grant No.2009DFA52170)+1 种基金the National High-Tech Research and Development Program of China ("863" Project) (Grant No.2009AA03Z101)the Ministry of Education,P.R.China (Grant No.707037)
文摘A materials design tool for developing Pb-free soldering alloys in electronic package was developed based on comprehensive experimental data of phase equilibria and thermodynamic properties data accumulated with the CALPHAD (calculation of phase diagrams) method and contains 10 elements,namely,Ag,Au,Bi,Cu,In,Ni,Sb,Sn,Zn and Pb.It can handle the calculation of phase diagrams in all combinations of these elements and all composition ranges.In addition,based on this tool,the liquidus,solidus,phase fractions and constitutions,equilibrium and non-equilibrium solidification behavior,surface tension and viscosity of liquid,diffusion reactions and microstructural evolution,etc.can be predicted.Typical examples of the calculation and application of this tool are presented.The design tool is expected to be a powerful tool for the development of Pb-free solders,as well as for promoting the understanding of the interfacial phenomena between Cu substrate and Pb-free solders in electronic packaging technology.