Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grow...Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grows, ensuring food availability becomes increasingly urgent. This review explores the significance of advanced plant disease detection techniques in disease and pest management for enhancing food security. Traditional plant disease detection methods often rely on visual inspection and are time-consuming and subjective. This leads to delayed interventions and ineffective control measures. However, recent advancements in remote sensing, imaging technologies, and molecular diagnostics offer powerful tools for early and precise disease detection. Big data analytics and machine learning play pivotal roles in analyzing vast and complex datasets, thus accurately identifying plant diseases and predicting disease occurrence and severity. We explore how prompt interventions employing advanced techniques enable more efficient disease control and concurrently minimize the environmental impact of conventional disease and pest management practices. Furthermore, we analyze and make future recommendations to improve the precision and sensitivity of current advanced detection techniques. We propose incorporating eco-evolutionary theories into research to enhance the understanding of pathogen spread in future climates and mitigate the risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with scientists, policymakers, and relevant intergovernmental organizations to ensure coordination and collaboration among them, ultimately developing effective disease monitoring and management strategies needed for securing sustainable food production and environmental well-being.展开更多
文摘Plant diseases and pests present significant challenges to global food security, leading to substantial losses in agricultural productivity and threatening environmental sustainability. As the world’s population grows, ensuring food availability becomes increasingly urgent. This review explores the significance of advanced plant disease detection techniques in disease and pest management for enhancing food security. Traditional plant disease detection methods often rely on visual inspection and are time-consuming and subjective. This leads to delayed interventions and ineffective control measures. However, recent advancements in remote sensing, imaging technologies, and molecular diagnostics offer powerful tools for early and precise disease detection. Big data analytics and machine learning play pivotal roles in analyzing vast and complex datasets, thus accurately identifying plant diseases and predicting disease occurrence and severity. We explore how prompt interventions employing advanced techniques enable more efficient disease control and concurrently minimize the environmental impact of conventional disease and pest management practices. Furthermore, we analyze and make future recommendations to improve the precision and sensitivity of current advanced detection techniques. We propose incorporating eco-evolutionary theories into research to enhance the understanding of pathogen spread in future climates and mitigate the risk of disease outbreaks. We highlight the need for a science-policy interface that works closely with scientists, policymakers, and relevant intergovernmental organizations to ensure coordination and collaboration among them, ultimately developing effective disease monitoring and management strategies needed for securing sustainable food production and environmental well-being.