This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystall...This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.展开更多
The aim of this work is to present a theoretical study of external magnetic field effect on a bifacial silicon solar cell’s electrical parameters (peak power, fill factor and load resistance) using the J-V and P-V ch...The aim of this work is to present a theoretical study of external magnetic field effect on a bifacial silicon solar cell’s electrical parameters (peak power, fill factor and load resistance) using the J-V and P-V characteristics. After the resolution of the magneto transport equation and continuity equation of excess minority carriers in the base of the bifacial silicon solar cell under multispectral illumination, the photo-current density and the photovoltage are determined and the J-V and P-V curves are plotted. Using simultaneously the J-V and P-V curves, we determine, according to magnetic field intensity, the peak photocurrent density, the peak photovoltage, the peak electric power, the fill factor and the load resistance at the peak power point. The numerical data show that the solar cell’s peak power decreases with magnetic field intensity while the fill factor and the load resistance increase.展开更多
It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentra...It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>展开更多
A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of...A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.展开更多
The aim of this work is to investigate, with a three-dimensional steady-state approach, the effect of the incidence angle of a magnetic field on the performance of a polycrystalline silicon solar cell under multispect...The aim of this work is to investigate, with a three-dimensional steady-state approach, the effect of the incidence angle of a magnetic field on the performance of a polycrystalline silicon solar cell under multispectral illumination. The magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power, of a grain of the polycrystalline silicon solar cell. The influence of the incidence angle of the magnetic field on the diffusion coefficient, the short-circuit photocurrent density, the open-circuit photovoltage and the electric power-photovoltage is studied. Then, the curves of the electric power-photovoltage is used to find the maximum electric power allowing to calculate, according to the incidence angle of the magnetic field, the fill factor and the conversion efficiency. The study has shown that the increase of the incidence angle of the magnetic field from 0 rad to π/2 rad, can reduce the degradation of the performance of solar cells.展开更多
文摘This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction.
文摘The aim of this work is to present a theoretical study of external magnetic field effect on a bifacial silicon solar cell’s electrical parameters (peak power, fill factor and load resistance) using the J-V and P-V characteristics. After the resolution of the magneto transport equation and continuity equation of excess minority carriers in the base of the bifacial silicon solar cell under multispectral illumination, the photo-current density and the photovoltage are determined and the J-V and P-V curves are plotted. Using simultaneously the J-V and P-V curves, we determine, according to magnetic field intensity, the peak photocurrent density, the peak photovoltage, the peak electric power, the fill factor and the load resistance at the peak power point. The numerical data show that the solar cell’s peak power decreases with magnetic field intensity while the fill factor and the load resistance increase.
文摘It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>
文摘A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.
文摘The aim of this work is to investigate, with a three-dimensional steady-state approach, the effect of the incidence angle of a magnetic field on the performance of a polycrystalline silicon solar cell under multispectral illumination. The magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power, of a grain of the polycrystalline silicon solar cell. The influence of the incidence angle of the magnetic field on the diffusion coefficient, the short-circuit photocurrent density, the open-circuit photovoltage and the electric power-photovoltage is studied. Then, the curves of the electric power-photovoltage is used to find the maximum electric power allowing to calculate, according to the incidence angle of the magnetic field, the fill factor and the conversion efficiency. The study has shown that the increase of the incidence angle of the magnetic field from 0 rad to π/2 rad, can reduce the degradation of the performance of solar cells.