期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improved Hybrid Deep Collaborative Filtering Approach for True Recommendations 被引量:1
1
作者 Muhammad Ibrahim imran sarwar bajwa +3 位作者 Nadeem sarwar Haroon Abdul Waheed Muhammad Zulkifl Hasan Muhammad Zunnurain Hussain 《Computers, Materials & Continua》 SCIE EI 2023年第3期5301-5317,共17页
Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep lear... Recommendation services become an essential and hot research topic for researchers nowadays.Social data such asReviews play an important role in the recommendation of the products.Improvement was achieved by deep learning approaches for capturing user and product information from a short text.However,such previously used approaches do not fairly and efficiently incorporate users’preferences and product characteristics.The proposed novel Hybrid Deep Collaborative Filtering(HDCF)model combines deep learning capabilities and deep interaction modeling with high performance for True Recommendations.To overcome the cold start problem,the new overall rating is generated by aggregating the Deep Multivariate Rating DMR(Votes,Likes,Stars,and Sentiment scores of reviews)from different external data sources because different sites have different rating scores about the same product that make confusion for the user to make a decision,either product is truly popular or not.The proposed novel HDCF model consists of four major modules such as User Product Attention,Deep Collaborative Filtering,Neural Sentiment Classifier,and Deep Multivariate Rating(UPA-DCF+NSC+DMR)to solve the addressed problems.Experimental results demonstrate that our novel model is outperforming state-of-the-art IMDb,Yelp2013,and Yelp2014 datasets for the true top-n recommendation of products using HDCF to increase the accuracy,confidence,and trust of recommendation services. 展开更多
关键词 Neural sentiment classification user product attention deep collaborative filtering multivariate rating artificial intelligence
下载PDF
Leaching Fraction (LF) of Irrigation Water for Saline Soils Using Machine Learning
2
作者 Rab Nawaz Bashir imran sarwar bajwa +4 位作者 Muhammad Waseem Iqbal Muhammad Usman Ashraf Ahmed Mohammed Alghamdi Adel ABahaddad Khalid Ali Almarhabi 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期1915-1930,共16页
Soil salinity is a serious land degradation issue in agriculture.It is a major threat to agriculture productivity.Extra irrigation water is applied to leach down the salts from the root zone of the plants in the form ... Soil salinity is a serious land degradation issue in agriculture.It is a major threat to agriculture productivity.Extra irrigation water is applied to leach down the salts from the root zone of the plants in the form of a Leaching fraction(LF)of irrigation water.For the leaching process to be effective,the LF of irriga-tion water needs to be adjusted according to the environmental conditions and soil salinity level in the form of Evapotranspiration(ET)rate.The relationship between environmental conditions and ET rate is hard to be defined by a linear relationship and data-driven Machine learning(ML)based decisions are required to determine the calibrated Evapotranspiration(ETc)rate.ML-assisted ETc is pro-posed to adjust the LF according to the ETc and soil salinity level.A regression model is proposed to determine the ETc rate according to the prevailing tempera-ture,humidity,and sunshine,which would be used to determine the smart LF according to the ETc and soil salinity level.The proposed model is trained and tested against the Blaney Criddle method of Reference evapotranspiration(ETo)determination.The validation of the model from the test dataset reveals the accu-racy of the ML model in terms of Root mean squared errors(RMSE)are 0.41,Mean absolute errors(MAE)are 0.34,and Mean squared errors(MSE)are 0.28 mm day-1.The applications of the proposed solution in a real-time environ-ment show that the LF by the proposed solution is more effective in reducing the soil salinity as compared to the traditional process of leaching. 展开更多
关键词 Leaching fraction saline soil EVAPOTRANSPIRATION machine learning calibrated evapotranspiration artificial intelligence blaney criddle method
下载PDF
A Rule Based System for Speech Language Context Understanding
3
作者 imran sarwar bajwa Muhammad Abbas Choudhary 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期39-42,共4页
Speech or Natural language contents are major tools of communication. This research paper presents a natural language processing based automated system for understanding speech language text. A new rule based model ha... Speech or Natural language contents are major tools of communication. This research paper presents a natural language processing based automated system for understanding speech language text. A new rule based model has been presented for analyzing the natural languages and extracting the relative meanings from the given text. User writes the natural language text in simple English in a few paragraphs and the designed system has a sound ability of analyzing the given script by the user. After composite analysis and extraction of associated information, the designed system gives particular meanings to an assortment of speech language text on the basis of its context. The designed system uses standard speech language rules that are clearly defined for all speech languages as English, Urdu, Chinese, Arabic, French, etc. The designed system provides a quick and reliable way to comprehend speech language context and generate respective meanings. 展开更多
关键词 automatic text understanding speech language processing information extraction language engineering.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部