Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates pa...This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.展开更多
Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty co...Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.展开更多
The rapid advancement of data in web-based communication has created one of the biggest issues concerning the security of data carried over the internet from unauthorized access.To improve data security,modern cryptos...The rapid advancement of data in web-based communication has created one of the biggest issues concerning the security of data carried over the internet from unauthorized access.To improve data security,modern cryptosystems use substitution-boxes.Nowadays,data privacy has become a key concern for consumers who transfer sensitive data from one place to another.To address these problems,many companies rely on cryptographic techniques to secure data from illegal activities and assaults.Among these cryptographic approaches,AES is a well-known algorithm that transforms plain text into cipher text by employing substitution box(S-box).The S-box disguises the relationship between cipher text and the key to guard against cipher attacks.The security of a cipher using an S-box depends on the cryptographic strength of the respective S-box.Therefore,various researchers have employed different techniques to construct high order non-linear S-box.This paper provides a novel approach for evolving S-boxes using coset graphs for the action of the alternating group A5 over the finite field and the symmetric group S256.The motivation for this work is to study the symmetric group and coset graphs.The authors have performed various analyses against conventional security criteria such as nonlinearity,differential uniformity,linear probability,the bit independence criterion,and the strict avalanche criterion to determine its high cryptographic strength.To evaluate its image application performance,the proposed S-box is also used to encrypt digital images.The performance and comparison analyses show that the suggested S-box can secure data against cyber-attacks.展开更多
This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a p...This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.展开更多
The doubly resolving sets are a natural tool to identify where diffusion occurs in a complicated network.Many realworld phenomena,such as rumour spreading on social networks,the spread of infectious diseases,and the s...The doubly resolving sets are a natural tool to identify where diffusion occurs in a complicated network.Many realworld phenomena,such as rumour spreading on social networks,the spread of infectious diseases,and the spread of the virus on the internet,may be modelled using information diffusion in networks.It is obviously impractical to monitor every node due to cost and overhead limits because there are too many nodes in the network,some of which may be unable or unwilling to send information about their state.As a result,the source localization problem is to find the number of nodes in the network that best explains the observed diffusion.This problem can be successfully solved by using its relationship with the well-studied related minimal doubly resolving set problem,which minimizes the number of observers required for accurate detection.This paper aims to investigate the minimal doubly resolving set for certain families of Toeplitz graph Tn(1,t),for t≥2 and n≥t+2.We come to the conclusion that for Tn(1,2),the metric and double metric dimensions are equal and for Tn(1,4),the double metric dimension is exactly one more than the metric dimension.Also,the double metric dimension for Tn(1,3)is equal to the metric dimension for n=5,6,7 and one greater than the metric dimension for n≥8.展开更多
Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leew...Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.展开更多
Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perc...Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.展开更多
We explored the insinuations of bio-convection and thermal radiation on nanofluid transportation across stretching permeable wedge with magnetic force.Appropriate similarity transformation variables are utilized to ac...We explored the insinuations of bio-convection and thermal radiation on nanofluid transportation across stretching permeable wedge with magnetic force.Appropriate similarity transformation variables are utilized to achieve ordinary differential equations.In order to tackle the non-linearity of these equations,numerical procedure based on shooting technique and Range Kutta method are harnessed on MATLAB platform.Computational and devour is carried out to evaluate the influence of controlling limitations on temperature,velocity,concentration of nanofluids and micro-organisms density.The growing strength of thermophoresis and Brownian motion enhance the fluid temperature.The profile volume fraction show decline against higher values of parameters which are Lewis number,unsteadiness and Brownian motion but opposite trend noted against higher value of Williamson and thermophoresis parameters.The skin friction values rise with the growing values of parameter of wedge angle for the moving wedge.The motile organism profile exhibits decrease against growing strength of Peclet number,bioconvection Lewis number,temperature difference and unsteady parameters while opposite behavior has been noted against wedge angle parameter.展开更多
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金funded by King Saud University,Research Supporting Project Number(RSP2024R167),Riyadh,Saudi Arabia.
文摘This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.
文摘Interval-valued Pythagorean fuzzy soft set(IVPFSS)is a generalization of the interval-valued intuitionistic fuzzy soft set(IVIFSS)and interval-valued Pythagorean fuzzy set(IVPFS).The IVPFSS handled more uncertainty comparative to IVIFSS;it is the most significant technique for explaining fuzzy information in the decision-making process.In this work,some novel operational laws for IVPFSS have been proposed.Based on presented operational laws,two innovative aggregation operators(AOs)have been developed such as interval-valued Pythagorean fuzzy soft weighted average(IVPFSWA)and interval-valued Pythagorean fuzzy soft weighted geometric(IVPFSWG)operators with their fundamental properties.A multi-attribute group decision-making(MAGDM)approach has been established utilizing our developed operators.A numerical example has been presented to ensure the validity of the proposed MAGDM technique.Finally,comparative studies have been given between the proposed approach and some existing studies.The obtained results through comparative studies show that the proposed technique is more credible and reliable than existing approaches.
文摘The rapid advancement of data in web-based communication has created one of the biggest issues concerning the security of data carried over the internet from unauthorized access.To improve data security,modern cryptosystems use substitution-boxes.Nowadays,data privacy has become a key concern for consumers who transfer sensitive data from one place to another.To address these problems,many companies rely on cryptographic techniques to secure data from illegal activities and assaults.Among these cryptographic approaches,AES is a well-known algorithm that transforms plain text into cipher text by employing substitution box(S-box).The S-box disguises the relationship between cipher text and the key to guard against cipher attacks.The security of a cipher using an S-box depends on the cryptographic strength of the respective S-box.Therefore,various researchers have employed different techniques to construct high order non-linear S-box.This paper provides a novel approach for evolving S-boxes using coset graphs for the action of the alternating group A5 over the finite field and the symmetric group S256.The motivation for this work is to study the symmetric group and coset graphs.The authors have performed various analyses against conventional security criteria such as nonlinearity,differential uniformity,linear probability,the bit independence criterion,and the strict avalanche criterion to determine its high cryptographic strength.To evaluate its image application performance,the proposed S-box is also used to encrypt digital images.The performance and comparison analyses show that the suggested S-box can secure data against cyber-attacks.
文摘This article presents an optimized approach of mathematical techniques in themedical domain by manoeuvring the phenomenon of ant colony optimization algorithm(also known as ACO).A complete graph of blood banks and a path that covers all the blood banks without repeating any link is required by applying the Travelling Salesman Problem(often TSP).The wide use promises to accelerate and offers the opportunity to cultivate health care,particularly in remote or unmerited environments by shrinking lab testing reversal times,empowering just-in-time lifesaving medical supply.
文摘The doubly resolving sets are a natural tool to identify where diffusion occurs in a complicated network.Many realworld phenomena,such as rumour spreading on social networks,the spread of infectious diseases,and the spread of the virus on the internet,may be modelled using information diffusion in networks.It is obviously impractical to monitor every node due to cost and overhead limits because there are too many nodes in the network,some of which may be unable or unwilling to send information about their state.As a result,the source localization problem is to find the number of nodes in the network that best explains the observed diffusion.This problem can be successfully solved by using its relationship with the well-studied related minimal doubly resolving set problem,which minimizes the number of observers required for accurate detection.This paper aims to investigate the minimal doubly resolving set for certain families of Toeplitz graph Tn(1,t),for t≥2 and n≥t+2.We come to the conclusion that for Tn(1,2),the metric and double metric dimensions are equal and for Tn(1,4),the double metric dimension is exactly one more than the metric dimension.Also,the double metric dimension for Tn(1,3)is equal to the metric dimension for n=5,6,7 and one greater than the metric dimension for n≥8.
基金funding this work through General Research Project under Grant No.GRP/93/43.
文摘Hypersoft set theory is a most advanced form of soft set theory and an innovative mathematical tool for dealing with unclear complications.Pythagorean fuzzy hypersoft set(PFHSS)is the most influential and capable leeway of the hypersoft set(HSS)and Pythagorean fuzzy soft set(PFSS).It is also a general form of the intuitionistic fuzzy hypersoft set(IFHSS),which provides a better and more perfect assessment of the decision-making(DM)process.The fundamental objective of this work is to enrich the precision of decision-making.A novel mixed aggregation operator called Pythagorean fuzzy hypersoft Einstein weighted geometric(PFHSEWG)based on Einstein’s operational laws has been developed.Some necessary properties,such as idempotency,boundedness,and homogeneity,have been presented for the anticipated PFHSEWG operator.Multi-criteria decision-making(MCDM)plays an active role in dealing with the complications of manufacturing design for material selection.However,conventional methods of MCDM usually produce inconsistent results.Based on the proposed PFHSEWG operator,a robust MCDM procedure for material selection in manufacturing design is planned to address these inconveniences.The expected MCDM method for material selection(MS)of cryogenic storing vessels has been established in the real world.Significantly,the planned model for handling inaccurate data based on PFHSS is more operative and consistent.
基金funding this work through General Research Project under Grant No.R.G.P.327/43.
文摘Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.
基金This work was supported by the National Natural Science Foundation of China(No.52106004)for which the authors are thankful.
文摘We explored the insinuations of bio-convection and thermal radiation on nanofluid transportation across stretching permeable wedge with magnetic force.Appropriate similarity transformation variables are utilized to achieve ordinary differential equations.In order to tackle the non-linearity of these equations,numerical procedure based on shooting technique and Range Kutta method are harnessed on MATLAB platform.Computational and devour is carried out to evaluate the influence of controlling limitations on temperature,velocity,concentration of nanofluids and micro-organisms density.The growing strength of thermophoresis and Brownian motion enhance the fluid temperature.The profile volume fraction show decline against higher values of parameters which are Lewis number,unsteadiness and Brownian motion but opposite trend noted against higher value of Williamson and thermophoresis parameters.The skin friction values rise with the growing values of parameter of wedge angle for the moving wedge.The motile organism profile exhibits decrease against growing strength of Peclet number,bioconvection Lewis number,temperature difference and unsteady parameters while opposite behavior has been noted against wedge angle parameter.