The deaf-mutes population is constantly feeling helpless when others do not understand them and vice versa.To fill this gap,this study implements a CNN-based neural network,Convolutional Based Attention Module(CBAM),t...The deaf-mutes population is constantly feeling helpless when others do not understand them and vice versa.To fill this gap,this study implements a CNN-based neural network,Convolutional Based Attention Module(CBAM),to recognise Malaysian Sign Language(MSL)in videos recognition.This study has created 2071 videos for 19 dynamic signs.Two different experiments were conducted for dynamic signs,using CBAM-3DResNet implementing‘Within Blocks’and‘Before Classifier’methods.Various metrics such as the accuracy,loss,precision,recall,F1-score,confusion matrix,and training time were recorded to evaluate the models’efficiency.Results showed that CBAM-ResNet models had good performances in videos recognition tasks,with recognition rates of over 90%with little variations.CBAMResNet‘Before Classifier’is more efficient than‘Within Blocks’models of CBAM-ResNet.All experiment results indicated the CBAM-ResNet‘Before Classifier’efficiency in recognising Malaysian Sign Language and its worth of future research.展开更多
One of the most commonly reported disabilities is vision loss,which can be diagnosed by an ophthalmologist in order to determine the visual system of a patient.This procedure,however,usually requires an appointment wi...One of the most commonly reported disabilities is vision loss,which can be diagnosed by an ophthalmologist in order to determine the visual system of a patient.This procedure,however,usually requires an appointment with an ophthalmologist,which is both time-consuming and expensive process.Other issues that can arise include a lack of appropriate equipment and trained practitioners,especially in rural areas.Centered on a cognitively motivated attribute extraction and speech recognition approach,this paper proposes a novel idea that immediately determines the eyesight deficiency.The proposed system uses an adaptive filter bank with weighted mel frequency cepstral coefficients for feature extraction.The adaptive filter bank implementation is inspired by the principle of spectrum sensing in cognitive radio that is aware of its environment and adapts to statistical variations in the input stimuli by learning from the environment.Comparative performance evaluation demonstrates the potential of our automated visual acuity test method to achieve comparable results to the clinical ground truth,established by the expert ophthalmologist’s tests.The overall accuracy achieved by the proposed model when compared with the expert ophthalmologist test is 91.875%.The proposed method potentially offers a second opinion to ophthalmologists,and serves as a cost-effective pre-screening test to predict eyesight loss at an early stage.展开更多
The Flying Ad-hoc Networks(FANETs)is characterized by the transition from a single large Unmanned Aerial Vehicle(UAV)to multiple small UAVs connected in an ad-hoc fashion.Since high mobility is the core feature of suc...The Flying Ad-hoc Networks(FANETs)is characterized by the transition from a single large Unmanned Aerial Vehicle(UAV)to multiple small UAVs connected in an ad-hoc fashion.Since high mobility is the core feature of such networks,they are prone to route breaks within the links.The issue of connectivity loss can be coped with,to some extent,by making use of omnidirectional antennas.Such modification,however,curtails Quality-of-Service(QoS)requirements of networks in terms of bandwidth,media access delay,coverage and others.Alternately,directional antennas have advantages over omnidirectional antennas such as improved transmission range,spatial reuse and high throughput.Nevertheless,its introduction raises location-dependent issues to the Medium Access Control(MAC)protocol.This calls for an efficient MAC protocol that can cater to new directional antenna models and,at the same time,can counter the constraints associated with the dynamic UAVs.Therefore,in this article,we consider a UAV interconnection mechanism that lets the UAVs execute the communication tasks using the directional MAC protocol.The technique is advantageous as compared to the approach of utilizing the MAC protocol using omnidirectional antennas.The scheme is being implemented as a case study for Industry 4.0 inventory and traceability applications in the warehouse.For modeling and simulation purposes,we use the Optimized Network Engineering Tool(OPNET)and aim to seek an evaluation with respect to throughput,media access delay,retransmission attempts and data dropped.The results obtained demonstrate the effectiveness of the proposed scheme.展开更多
Industrial internet of things (IIoT) is the usage of internet of things(IoT) devices and applications for the purpose of sensing, processing andcommunicating real-time events in the industrial system to reduce the unn...Industrial internet of things (IIoT) is the usage of internet of things(IoT) devices and applications for the purpose of sensing, processing andcommunicating real-time events in the industrial system to reduce the unnecessary operational cost and enhance manufacturing and other industrial-relatedprocesses to attain more profits. However, such IoT based smart industriesneed internet connectivity and interoperability which makes them susceptibleto numerous cyber-attacks due to the scarcity of computational resourcesof IoT devices and communication over insecure wireless channels. Therefore, this necessitates the design of an efficient security mechanism for IIoTenvironment. In this paper, we propose a hyperelliptic curve cryptography(HECC) based IIoT Certificateless Signcryption (IIoT-CS) scheme, with theaim of improving security while lowering computational and communicationoverhead in IIoT environment. HECC with 80-bit smaller key and parameterssizes offers similar security as elliptic curve cryptography (ECC) with 160-bitlong key and parameters sizes. We assessed the IIoT-CS scheme security byapplying formal and informal security evaluation techniques. We used Realor Random (RoR) model and the widely used automated validation of internet security protocols and applications (AVISPA) simulation tool for formalsecurity analysis and proved that the IIoT-CS scheme provides resistance tovarious attacks. Our proposed IIoT-CS scheme is relatively less expensivecompared to the current state-of-the-art in terms of computational cost andcommunication overhead. Furthermore, the IIoT-CS scheme is 31.25% and 51.31% more efficient in computational cost and communication overhead,respectively, compared to the most recent protocol.展开更多
When the Wireless Sensor Network(WSN)is combined with the Internet of Things(IoT),it can be employed in a wide range of applications,such as agriculture,industry 4.0,health care,smart homes,among others.Accessing the ...When the Wireless Sensor Network(WSN)is combined with the Internet of Things(IoT),it can be employed in a wide range of applications,such as agriculture,industry 4.0,health care,smart homes,among others.Accessing the big data generated by these applications in Cloud Servers(CSs),requires higher levels of authenticity and confidentiality during communication conducted through the Internet.Signcryption is one of the most promising approaches nowadays for overcoming such obstacles,due to its combined nature,i.e.,signature and encryption.A number of researchers have developed schemes to address issues related to access control in the IoT literature,however,the majority of these schemes are based on homogeneous nature.This will be neither adequate nor practical for heterogeneous IoT environments.In addition,these schemes are based on bilinear pairing and elliptic curve cryptography,which further requires additional processing time and more communication overheads that is inappropriate for real-time communication.Consequently,this paper aims to solve the above-discussed issues,we proposed an access control scheme for IoT environments using heterogeneous signcryption scheme with the efficiency and security hardiness of hyperelliptic curve.Besides the security services such as replay attack prevention,confidentiality,integrity,unforgeability,non-repudiations,and forward secrecy,the proposed scheme has very low computational and communication costs,when it is compared to existing schemes.This is primarily because of hyperelliptic curve lighter nature of key and other parameters.The AVISPA tool is used to simulate the security requirements of our proposed scheme and the results were under two backbends(Constraint Logic-based Attack Searcher(CL-b-AtSER)and On-the-Fly Model Checker(ON-t-FL-MCR))proved to be SAFE when the presented scheme is coded in HLPSL language.This scheme was proven to be capable of preventing a variety of attacks,including confidentiality,integrity,unforgeability,non-repudiation,forward secrecy,and replay attacks.展开更多
Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities amon...Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities among the angles of targets,which may result inmisinterpretation of such targets.In order to cope up with such ambiguities,various techniques have been proposed.Unfortunately,none of them fully resolved such a problem because of rank deficiency and high computational cost.We aimed to resolve such a problem by proposing an algorithm using differential geometry.The proposed algorithm uses a specially designed doublet antenna array,which is made up of two individual linear arrays.Two angle observation models,ambiguous observation model(AOM)and estimated observation model(EOM),are derived for each individual array.The ambiguous set of angles is contained in the AOM,which is obtained from the corresponding array elements using differential geometry.The EOM for each array,on the other hand,contains estimated angles of all sources impinging signals on each array,as calculated by a direction-finding algorithm such as the genetic algorithm.The algorithm then contrasts the EOM of each array with its AOM,selecting the output of that array whose EOM has the minimum correlation with its corresponding AOM.In comparison to existing techniques,the proposed algorithm improves estimation accuracy and has greater precision in antenna aperture selection,resulting in improved resolution capabilities and the potential to be used more widely in practical scenarios.The simulation results using MATLAB authenticates the effectiveness of the proposed algorithm.展开更多
Scalability is one of the utmost nonfunctional requirement of server applications,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to achiev...Scalability is one of the utmost nonfunctional requirement of server applications,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to achieve scalability,thread pool system(TPS)has been used extensively as a middleware service in server applications.The size of thread pool is the most significant factor,that affects the overall performance of servers.Determining the optimal size of thread pool dynamically on runtime is a challenging problem.The most widely used and simple method to tackle this problem is to keep the size of thread pool equal to the request rate,i.e.,the frequencyoriented thread pool(FOTP).The FOTPs are the most widely used TPSs in the industry,because of the implementation simplicity,the negligible overhead and the capability to use in any system.However,the frequency-based schemes only focused on one aspect of changes in the load,and that is the fluctuations in request rate.The request rate alone is an imperfect knob to scale thread pool.Thus,this paper presents a workload profiling based FOTP,that focuses on request size(service time of request)besides the request rate as a knob to scale thread pool on runtime,because we argue that the combination of both truly represents the load fluctuation in server-side applications.We evaluated the results of the proposed system against state of the art TPS of Oracle Corporation(by a client-server-based simulator)and concluded that our system outperformed in terms of both;the response times and throughput.展开更多
Scalability is one of the most important quality attribute of softwareintensive systems,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to ...Scalability is one of the most important quality attribute of softwareintensive systems,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to achieve scalability,thread pool system(TPS)(which is also known as executor service)has been used extensively as a middleware service in software-intensive systems.TPS optimization is a challenging problem that determines the optimal size of thread pool dynamically on runtime.In case of distributed-TPS(DTPS),another issue is the load balancing b/w available set of TPSs running at backend servers.Existing DTPSs are overloaded either due to an inappropriate TPS optimization strategy at backend servers or improper load balancing scheme that cannot quickly recover an overload.Consequently,the performance of software-intensive system is suffered.Thus,in this paper,we propose a new DTPS that follows the collaborative round robin load balancing that has the effect of a double-edge sword.On the one hand,it effectively performs the load balancing(in case of overload situation)among available TPSs by a fast overload recovery procedure that decelerates the load on the overloaded TPSs up to their capacities and shifts the remaining load towards other gracefully running TPSs.And on the other hand,its robust load deceleration technique which is applied to an overloaded TPS sets an appropriate upper bound of thread pool size,because the pool size in each TPS is kept equal to the request rate on it,hence dynamically optimizes TPS.We evaluated the results of the proposed system against state of the art DTPSs by a clientserver based simulator and found that our system outperformed by sustaining smaller response times.展开更多
Recent years have witnessed growing scientific research interest in the Internet of Things(IoT)technologies,which supports the development of a variety of applications such as health care,Industry 4.0,agriculture,ecol...Recent years have witnessed growing scientific research interest in the Internet of Things(IoT)technologies,which supports the development of a variety of applications such as health care,Industry 4.0,agriculture,ecological data management,and other various domains.IoT utilizes the Internet as a prime medium of communication for both single documents as well as multi-digital messages.However,due to the wide-open nature of the Internet,it is important to ensure the anonymity,untraceably,confidentiality,and unforgeability of communication with efficient computational complexity and low bandwidth.We designed a light weight and secure proxy blind signcryption for multi-digital messages based on a hyperelliptic curve(HEC).Our results outperform the available schemes in terms of computational cost and communication bandwidth.The designed scheme also has the desired authentication,unforgeability of warrants and/or plaintext,confidentiality,integrity,and blindness,respectively.Further,our scheme is more suitable for devices with low computation power such as mobiles and tablets.展开更多
文摘The deaf-mutes population is constantly feeling helpless when others do not understand them and vice versa.To fill this gap,this study implements a CNN-based neural network,Convolutional Based Attention Module(CBAM),to recognise Malaysian Sign Language(MSL)in videos recognition.This study has created 2071 videos for 19 dynamic signs.Two different experiments were conducted for dynamic signs,using CBAM-3DResNet implementing‘Within Blocks’and‘Before Classifier’methods.Various metrics such as the accuracy,loss,precision,recall,F1-score,confusion matrix,and training time were recorded to evaluate the models’efficiency.Results showed that CBAM-ResNet models had good performances in videos recognition tasks,with recognition rates of over 90%with little variations.CBAMResNet‘Before Classifier’is more efficient than‘Within Blocks’models of CBAM-ResNet.All experiment results indicated the CBAM-ResNet‘Before Classifier’efficiency in recognising Malaysian Sign Language and its worth of future research.
文摘One of the most commonly reported disabilities is vision loss,which can be diagnosed by an ophthalmologist in order to determine the visual system of a patient.This procedure,however,usually requires an appointment with an ophthalmologist,which is both time-consuming and expensive process.Other issues that can arise include a lack of appropriate equipment and trained practitioners,especially in rural areas.Centered on a cognitively motivated attribute extraction and speech recognition approach,this paper proposes a novel idea that immediately determines the eyesight deficiency.The proposed system uses an adaptive filter bank with weighted mel frequency cepstral coefficients for feature extraction.The adaptive filter bank implementation is inspired by the principle of spectrum sensing in cognitive radio that is aware of its environment and adapts to statistical variations in the input stimuli by learning from the environment.Comparative performance evaluation demonstrates the potential of our automated visual acuity test method to achieve comparable results to the clinical ground truth,established by the expert ophthalmologist’s tests.The overall accuracy achieved by the proposed model when compared with the expert ophthalmologist test is 91.875%.The proposed method potentially offers a second opinion to ophthalmologists,and serves as a cost-effective pre-screening test to predict eyesight loss at an early stage.
文摘The Flying Ad-hoc Networks(FANETs)is characterized by the transition from a single large Unmanned Aerial Vehicle(UAV)to multiple small UAVs connected in an ad-hoc fashion.Since high mobility is the core feature of such networks,they are prone to route breaks within the links.The issue of connectivity loss can be coped with,to some extent,by making use of omnidirectional antennas.Such modification,however,curtails Quality-of-Service(QoS)requirements of networks in terms of bandwidth,media access delay,coverage and others.Alternately,directional antennas have advantages over omnidirectional antennas such as improved transmission range,spatial reuse and high throughput.Nevertheless,its introduction raises location-dependent issues to the Medium Access Control(MAC)protocol.This calls for an efficient MAC protocol that can cater to new directional antenna models and,at the same time,can counter the constraints associated with the dynamic UAVs.Therefore,in this article,we consider a UAV interconnection mechanism that lets the UAVs execute the communication tasks using the directional MAC protocol.The technique is advantageous as compared to the approach of utilizing the MAC protocol using omnidirectional antennas.The scheme is being implemented as a case study for Industry 4.0 inventory and traceability applications in the warehouse.For modeling and simulation purposes,we use the Optimized Network Engineering Tool(OPNET)and aim to seek an evaluation with respect to throughput,media access delay,retransmission attempts and data dropped.The results obtained demonstrate the effectiveness of the proposed scheme.
基金This work is supported by the University of Malaya IIRG Grant(IIRG008A-19IISSN),Ministry of Education FRGS Grant(FP055-2019A)This work was also supported by Grant System of University of Zilina No.1/2020.(Project No.7962)partially supported by the Slovak Grant Agency for Science(VEGA)under Grant Number 1/0157/21.The authors are grateful to the Taif University Researchers Supporting Project(Number TURSP-2020/36),Taif University,Taif,Saudi Arabia.
文摘Industrial internet of things (IIoT) is the usage of internet of things(IoT) devices and applications for the purpose of sensing, processing andcommunicating real-time events in the industrial system to reduce the unnecessary operational cost and enhance manufacturing and other industrial-relatedprocesses to attain more profits. However, such IoT based smart industriesneed internet connectivity and interoperability which makes them susceptibleto numerous cyber-attacks due to the scarcity of computational resourcesof IoT devices and communication over insecure wireless channels. Therefore, this necessitates the design of an efficient security mechanism for IIoTenvironment. In this paper, we propose a hyperelliptic curve cryptography(HECC) based IIoT Certificateless Signcryption (IIoT-CS) scheme, with theaim of improving security while lowering computational and communicationoverhead in IIoT environment. HECC with 80-bit smaller key and parameterssizes offers similar security as elliptic curve cryptography (ECC) with 160-bitlong key and parameters sizes. We assessed the IIoT-CS scheme security byapplying formal and informal security evaluation techniques. We used Realor Random (RoR) model and the widely used automated validation of internet security protocols and applications (AVISPA) simulation tool for formalsecurity analysis and proved that the IIoT-CS scheme provides resistance tovarious attacks. Our proposed IIoT-CS scheme is relatively less expensivecompared to the current state-of-the-art in terms of computational cost andcommunication overhead. Furthermore, the IIoT-CS scheme is 31.25% and 51.31% more efficient in computational cost and communication overhead,respectively, compared to the most recent protocol.
文摘When the Wireless Sensor Network(WSN)is combined with the Internet of Things(IoT),it can be employed in a wide range of applications,such as agriculture,industry 4.0,health care,smart homes,among others.Accessing the big data generated by these applications in Cloud Servers(CSs),requires higher levels of authenticity and confidentiality during communication conducted through the Internet.Signcryption is one of the most promising approaches nowadays for overcoming such obstacles,due to its combined nature,i.e.,signature and encryption.A number of researchers have developed schemes to address issues related to access control in the IoT literature,however,the majority of these schemes are based on homogeneous nature.This will be neither adequate nor practical for heterogeneous IoT environments.In addition,these schemes are based on bilinear pairing and elliptic curve cryptography,which further requires additional processing time and more communication overheads that is inappropriate for real-time communication.Consequently,this paper aims to solve the above-discussed issues,we proposed an access control scheme for IoT environments using heterogeneous signcryption scheme with the efficiency and security hardiness of hyperelliptic curve.Besides the security services such as replay attack prevention,confidentiality,integrity,unforgeability,non-repudiations,and forward secrecy,the proposed scheme has very low computational and communication costs,when it is compared to existing schemes.This is primarily because of hyperelliptic curve lighter nature of key and other parameters.The AVISPA tool is used to simulate the security requirements of our proposed scheme and the results were under two backbends(Constraint Logic-based Attack Searcher(CL-b-AtSER)and On-the-Fly Model Checker(ON-t-FL-MCR))proved to be SAFE when the presented scheme is coded in HLPSL language.This scheme was proven to be capable of preventing a variety of attacks,including confidentiality,integrity,unforgeability,non-repudiation,forward secrecy,and replay attacks.
文摘Linear antenna arrays(LAs)can be used to accurately predict the direction of arrival(DOAs)of various targets of interest in a given area.However,under certain conditions,LA suffers from the problem of ambiguities among the angles of targets,which may result inmisinterpretation of such targets.In order to cope up with such ambiguities,various techniques have been proposed.Unfortunately,none of them fully resolved such a problem because of rank deficiency and high computational cost.We aimed to resolve such a problem by proposing an algorithm using differential geometry.The proposed algorithm uses a specially designed doublet antenna array,which is made up of two individual linear arrays.Two angle observation models,ambiguous observation model(AOM)and estimated observation model(EOM),are derived for each individual array.The ambiguous set of angles is contained in the AOM,which is obtained from the corresponding array elements using differential geometry.The EOM for each array,on the other hand,contains estimated angles of all sources impinging signals on each array,as calculated by a direction-finding algorithm such as the genetic algorithm.The algorithm then contrasts the EOM of each array with its AOM,selecting the output of that array whose EOM has the minimum correlation with its corresponding AOM.In comparison to existing techniques,the proposed algorithm improves estimation accuracy and has greater precision in antenna aperture selection,resulting in improved resolution capabilities and the potential to be used more widely in practical scenarios.The simulation results using MATLAB authenticates the effectiveness of the proposed algorithm.
文摘Scalability is one of the utmost nonfunctional requirement of server applications,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to achieve scalability,thread pool system(TPS)has been used extensively as a middleware service in server applications.The size of thread pool is the most significant factor,that affects the overall performance of servers.Determining the optimal size of thread pool dynamically on runtime is a challenging problem.The most widely used and simple method to tackle this problem is to keep the size of thread pool equal to the request rate,i.e.,the frequencyoriented thread pool(FOTP).The FOTPs are the most widely used TPSs in the industry,because of the implementation simplicity,the negligible overhead and the capability to use in any system.However,the frequency-based schemes only focused on one aspect of changes in the load,and that is the fluctuations in request rate.The request rate alone is an imperfect knob to scale thread pool.Thus,this paper presents a workload profiling based FOTP,that focuses on request size(service time of request)besides the request rate as a knob to scale thread pool on runtime,because we argue that the combination of both truly represents the load fluctuation in server-side applications.We evaluated the results of the proposed system against state of the art TPS of Oracle Corporation(by a client-server-based simulator)and concluded that our system outperformed in terms of both;the response times and throughput.
文摘Scalability is one of the most important quality attribute of softwareintensive systems,because it maintains an effective performance parallel to the large fluctuating and sometimes unpredictable workload.In order to achieve scalability,thread pool system(TPS)(which is also known as executor service)has been used extensively as a middleware service in software-intensive systems.TPS optimization is a challenging problem that determines the optimal size of thread pool dynamically on runtime.In case of distributed-TPS(DTPS),another issue is the load balancing b/w available set of TPSs running at backend servers.Existing DTPSs are overloaded either due to an inappropriate TPS optimization strategy at backend servers or improper load balancing scheme that cannot quickly recover an overload.Consequently,the performance of software-intensive system is suffered.Thus,in this paper,we propose a new DTPS that follows the collaborative round robin load balancing that has the effect of a double-edge sword.On the one hand,it effectively performs the load balancing(in case of overload situation)among available TPSs by a fast overload recovery procedure that decelerates the load on the overloaded TPSs up to their capacities and shifts the remaining load towards other gracefully running TPSs.And on the other hand,its robust load deceleration technique which is applied to an overloaded TPS sets an appropriate upper bound of thread pool size,because the pool size in each TPS is kept equal to the request rate on it,hence dynamically optimizes TPS.We evaluated the results of the proposed system against state of the art DTPSs by a clientserver based simulator and found that our system outperformed by sustaining smaller response times.
文摘Recent years have witnessed growing scientific research interest in the Internet of Things(IoT)technologies,which supports the development of a variety of applications such as health care,Industry 4.0,agriculture,ecological data management,and other various domains.IoT utilizes the Internet as a prime medium of communication for both single documents as well as multi-digital messages.However,due to the wide-open nature of the Internet,it is important to ensure the anonymity,untraceably,confidentiality,and unforgeability of communication with efficient computational complexity and low bandwidth.We designed a light weight and secure proxy blind signcryption for multi-digital messages based on a hyperelliptic curve(HEC).Our results outperform the available schemes in terms of computational cost and communication bandwidth.The designed scheme also has the desired authentication,unforgeability of warrants and/or plaintext,confidentiality,integrity,and blindness,respectively.Further,our scheme is more suitable for devices with low computation power such as mobiles and tablets.