In order to investigate the mechanism of benzo[a]pyrene uptake by a filamentous fungus Fusarium solani, a biochemical characterization of its concentrated culture filtrate has been conducted. The preparation contained...In order to investigate the mechanism of benzo[a]pyrene uptake by a filamentous fungus Fusarium solani, a biochemical characterization of its concentrated culture filtrate has been conducted. The preparation contained approximately (w/w): 50% of total carbohydrate, 6.5% of uronic acid and 6% protein, as determined by colorimetric tests. Gel filtration and anion-exchange chromatographic profiles indicated that the main product of the culture filtrate was a glycoprotein, which contained mannose, glucose and galactose in an approximate molar ratio of 1.5: 0.8: 1. The polysaccharide fraction of the culture filtrate was prepared by treatment with proteinase K, followed by gel-filtration chromatography. Its chemical structure was studied by methylation analysis, gas-liquid chromatography-mass spectrometry (GC-MS) and Nuclear Magnetic Resonance spectroscopy (NMR). The major carbohydrate was a polymer of β-(1 → 6)-linked galactofuranose units fully branched at positions O-2 by single residues of α-glucopyranose. The Fusarium concentrated culture filtrate increased 4-fold the BaP solubilization in comparison with its aqueous solubility and suggested that the carbohydrate present in this filtrate should probably be involved in this enhancement. Our findings point out the potential role of fungal glycoproteins in PAH microbial bioavaibility, an important step for PAH biodegradation.展开更多
Biofilm formation is an important virulence factor of Staphylococcus epidermidis. However, little is known about the mechanisms of staphylococcal biofilm dispersal. In the present study, we investigated biofilm disper...Biofilm formation is an important virulence factor of Staphylococcus epidermidis. However, little is known about the mechanisms of staphylococcal biofilm dispersal. In the present study, we investigated biofilm dispersal of the model biofilm-forming strain S. epidermidis RP62A under oligotrophic stress conditions. We found that oligotrophic stress led to rapid dispersal of pre-formed biofilms and concomitant changes in the composition of the extracellular matrix, including a decrease in poly-N-acetylglucosamine polysaccharide and an increase in proteins. Our results suggest that modifications in biofilm integrity caused by compositional changes in the biofilm matrix can induce biofilm dispersal.展开更多
文摘In order to investigate the mechanism of benzo[a]pyrene uptake by a filamentous fungus Fusarium solani, a biochemical characterization of its concentrated culture filtrate has been conducted. The preparation contained approximately (w/w): 50% of total carbohydrate, 6.5% of uronic acid and 6% protein, as determined by colorimetric tests. Gel filtration and anion-exchange chromatographic profiles indicated that the main product of the culture filtrate was a glycoprotein, which contained mannose, glucose and galactose in an approximate molar ratio of 1.5: 0.8: 1. The polysaccharide fraction of the culture filtrate was prepared by treatment with proteinase K, followed by gel-filtration chromatography. Its chemical structure was studied by methylation analysis, gas-liquid chromatography-mass spectrometry (GC-MS) and Nuclear Magnetic Resonance spectroscopy (NMR). The major carbohydrate was a polymer of β-(1 → 6)-linked galactofuranose units fully branched at positions O-2 by single residues of α-glucopyranose. The Fusarium concentrated culture filtrate increased 4-fold the BaP solubilization in comparison with its aqueous solubility and suggested that the carbohydrate present in this filtrate should probably be involved in this enhancement. Our findings point out the potential role of fungal glycoproteins in PAH microbial bioavaibility, an important step for PAH biodegradation.
基金Dr.Thierry Grard(ULCO)for his supports and fruitful discussionProf.Pierre Hardouin(PMOI,ULCO)for his financial support.
文摘Biofilm formation is an important virulence factor of Staphylococcus epidermidis. However, little is known about the mechanisms of staphylococcal biofilm dispersal. In the present study, we investigated biofilm dispersal of the model biofilm-forming strain S. epidermidis RP62A under oligotrophic stress conditions. We found that oligotrophic stress led to rapid dispersal of pre-formed biofilms and concomitant changes in the composition of the extracellular matrix, including a decrease in poly-N-acetylglucosamine polysaccharide and an increase in proteins. Our results suggest that modifications in biofilm integrity caused by compositional changes in the biofilm matrix can induce biofilm dispersal.