期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Identifying genetic susceptibility to Aspergillus fumigatus infection using collaborative cross mice and RNA-Seq approach
1
作者 Roa'a H.S.Yosief Iqbal M.Lone +3 位作者 Aharon Nachshon Heinz Himmelbauer irit gat-viks Fuad A.Iraqi 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第1期36-47,共12页
Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidat... Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus(Af)using an RNAseq approach in CC lines and hepatic gene expression.Methods:We studied 31 male mice from 25 CC lines at 8 weeks old;the mice were infected with Af.Liver tissues were extracted from these mice 5 days post-infection,and next-generation RNA-sequencing(RNAseq)was performed.The GENE-E analysis platform was used to generate a clustered heat map matrix.Results:Significant variation in body weight changes between CC lines was ob-served.Hepatic gene expression revealed 12 top prioritized candidate genes differ-entially expressed in resistant versus susceptible mice based on body weight changes.Interestingly,three candidate genes are located within genomic intervals of the previ-ously mapped quantitative trait loci(QTL),including Gm16270 and Stox1 on chromo-some 10 and Gm11033 on chromosome 8.Conclusions:Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af.As a next step,eQTL analysis will be performed for our RNA-Seq data.Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis. 展开更多
关键词 aspergillus fumigatus infection collaborative cross(CC)mice gene expression profile gene-network host susceptibility quantitative trait loci(QTL)mapping RNA-SEQ
下载PDF
Mapping novel genetic loci associated with female liver weight variations using Collaborative Cross mice 被引量:4
2
作者 Hanifa J.Abu-Toamih Atamni Maya Botzman +2 位作者 Richard Mott irit gat-viks Fuad A.Iraqi 《Animal Models and Experimental Medicine》 2018年第3期212-220,共9页
Background: Liver weight is a complex trait, controlled by polygenic factors and differs within populations. Dissecting the genetic architecture underlying these variations will facilitate the search for key role cand... Background: Liver weight is a complex trait, controlled by polygenic factors and differs within populations. Dissecting the genetic architecture underlying these variations will facilitate the search for key role candidate genes involved directly in the hepatomegaly process and indirectly involved in related diseases etiology.Methods: Liver weight of 506 mice generated from 39 different Collaborative Cross(CC) lines with both sexes at age 20 weeks old was determined using an electronic balance. Genomic DNA of the CC lines was genotyped with high-density single nucleotide polymorphic markers.Results: Statistical analysis revealed a significant(P < 0.05) variation of liver weight between the CC lines, with broad sense heritability(H^2) of 0.32 and genetic coefficient of variation(CV_G) of 0.28. Subsequently, quantitative trait locus(QTL) mapping was performed, and results showed a significant QTL only for females on chromosome 8 at genomic interval 88.61-93.38 Mb(4.77 Mb). Three suggestive QTL were mapped at chromosomes 4, 12 and 13. The four QTL were designated as LWL1-LWL4 referring to liver weight loci 1-4 on chromosomes 8, 4, 12 and 13,respectively.Conclusion: To our knowledge, this report presents, for the first time, the utilization of the CC for mapping QTL associated with baseline liver weight in mice. Our findings demonstrate that liver weight is a complex trait controlled by multiple genetic factors that differ significantly between sexes. 展开更多
关键词 candidate genes COLLABORATIVE CROSS MOUSE model high genetic diverse MOUSE population liver weight quantitative TRAIT locus MAPPING standard RODENT diet
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部