The mutation is a critical element in determining the proteins’stability,becoming a core element in portraying the effects of a drug in the pharmaceutical industry.Doing wet laboratory tests to provide a better persp...The mutation is a critical element in determining the proteins’stability,becoming a core element in portraying the effects of a drug in the pharmaceutical industry.Doing wet laboratory tests to provide a better perspective on protein mutations is expensive and time-intensive since there are so many potential muta-tions,computational approaches that can reliably anticipate the consequences of amino acid mutations are critical.This work presents a robust methodology to analyze and identify the effects of mutation on a single protein structure.Initially,the context in a collection of words is determined using a knowledge graph for feature selection purposes.The proposed prediction is based on an easier and sim-pler logistic regression inferred binary classification technique.This approach can able to obtain a classification accuracy(AUC)Area Under the Curve of 87%when randomly validated against experimental energy changes.Moreover,for each cross-fold validation,the precision,recall,and F-Score are presented.These results support the validity of our strategy since it performs the vast majority of prior studies in this domain.展开更多
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
文摘The mutation is a critical element in determining the proteins’stability,becoming a core element in portraying the effects of a drug in the pharmaceutical industry.Doing wet laboratory tests to provide a better perspective on protein mutations is expensive and time-intensive since there are so many potential muta-tions,computational approaches that can reliably anticipate the consequences of amino acid mutations are critical.This work presents a robust methodology to analyze and identify the effects of mutation on a single protein structure.Initially,the context in a collection of words is determined using a knowledge graph for feature selection purposes.The proposed prediction is based on an easier and sim-pler logistic regression inferred binary classification technique.This approach can able to obtain a classification accuracy(AUC)Area Under the Curve of 87%when randomly validated against experimental energy changes.Moreover,for each cross-fold validation,the precision,recall,and F-Score are presented.These results support the validity of our strategy since it performs the vast majority of prior studies in this domain.
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.