A simple constitutive model,called semi-implicit model,for cyclic loading is proposed for steel materials used for structures such as building frames in civil engineering.The constitutive model is implemented in the E...A simple constitutive model,called semi-implicit model,for cyclic loading is proposed for steel materials used for structures such as building frames in civil engineering.The constitutive model is implemented in the E-Simulator,which is a software package for large-scale seismic response analysis.The constitutive relation is defined in an algorithmic manner based on the piecewise linear combined isotropic-kinematic hardening.Different rules are used for the first and subsequent loading states to incorporate characteristics such as yield plateau and Bauschinger effect of rolled mild steel materials.An optimization method is also presented for parameter identification from the results of cyclic and monotonic loading tests.Therefore,the proposed model is readily applicable to practical elastoplastic analysis of building frames.Accuracy of the model is demonstrated in an example of a cantilever subjected to various types of cyclic loading.展开更多
The objective of this study was to in- vestigate the effect of dietary protein level on nitrogen retention and compare nitrogen metabolism in Lohm- ann Brown adult roosters and layers. The nitrogen ma- intenance requi...The objective of this study was to in- vestigate the effect of dietary protein level on nitrogen retention and compare nitrogen metabolism in Lohm- ann Brown adult roosters and layers. The nitrogen ma- intenance requirement (Nm ) was determined based on the nitrogen balance. Thirty Lohmann Brown adult roosters and 30 laying hens at 27 weeks of age were randomly divided into five groups of six birds per group. The birds were fed with one of five diets con- taining 10.46%, 11.77%, 13.79%, 16.77% or 18.29% of crude protein. Nitrogen intake, nitrogen retention and nitrogen retention efficiency were higher in roost- ers than in laying hens, and the average nitrogen re- tention rate for groups fed with CP level of 11.77%, 13.79%, 16.77% and 18. 29% was improved by9.14%. The nitrogen maintenance requirement for Lohmann Brown roosters and laying hens at 27 weeks of age were 0.4245 g/d and 0.5059 g/d, respective- ly, and Nm based on average body weight (BW) and metabolic body weight ( BW^Ts ) was 0.2364 g/kg BW and 0. 2739 g/kg BW~'75 for laying hens and 0. 2754 g/kg BW and 0. 3208 g/kg BW^72 for roost- ers, respectively. The regression equations for daily N gain (NB, protein accretion) vs. daily N intake (NI ) for Lohrnann Brown layers and roosters were NB = 0.3743NI -0.1589(R2 =0.79) and NB =0.6228NI - 0.3151 ( R2 = 0.85 ), respectively. The results of this study indicate that nitrogen intake and nitrogen reten- tion at the same dietary CP level were higher in roost- ers than in laying hens.展开更多
During the last two decades, III-nitride-based quantum dots(QDs) have attracted great attentions for optoelectronic applications due to their unique electronic properties. In this paper, we first present an overview o...During the last two decades, III-nitride-based quantum dots(QDs) have attracted great attentions for optoelectronic applications due to their unique electronic properties. In this paper, we first present an overview on the techniques of fabrication for III-nitride-based QDs. Then various optoelectronic devices such as QD lasers, QD light-emitting diodes(LEDs), QD infrared photodetectors(QDIPs) and QD intermediate band(QDIB) solar cells(SCs) are discussed. Finally, we focus on the future research directions and how the challenges can be overcome.展开更多
The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of...The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the ...We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.展开更多
During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the ...During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.展开更多
There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B fac...There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.展开更多
Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,na...Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.展开更多
In this work,we demonstrate that the corrosion resistance of the FeCrNiCoNb_(0.5) eutectic high entropy alloy(EHEA)can be tuned by controlling the size of its eutectic structure.Through microstructure refinement,the E...In this work,we demonstrate that the corrosion resistance of the FeCrNiCoNb_(0.5) eutectic high entropy alloy(EHEA)can be tuned by controlling the size of its eutectic structure.Through microstructure refinement,the EHEA exhibits a superb corrosion resistance in 1 M NaCl in terms of a very low corrosion current density and an ultra-high transpassviation potential,which outperforms a variety of other HEAs and conventional metals and alloys.At the fundamental level,the microstructure refinement results in a rapid formation of a thick and compact passive film with less Cl-adsorption on the EHEA,which results in significant enhancement in its corrosion resistance.The outcome of our research provides important insights into the design of corrosion resistant chemically complex alloys.展开更多
Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i...Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively.展开更多
It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have du...It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have dual effect on the coarsening of Al3Sc nanoprecipitates.On the one hand,the Cu atoms with high diffusivity tend to accelerate the Al3Sc coarsening,which results from the Cu-promoted Sc diffusion.On the other hand,some Cu atoms will segregate at the Al3Sc/matrix interface,which further stabilizes the Al3Sc nanoprecipitates by reducing the interfacial energy.Competition between these two effects is tailored by temperature,which rationalizes the experimental findings that the coarsening kinetics of Al3Sc nanoprecipitate is greatly boosted at 300℃-overaging while significantly suppressed at 400℃-overaging.展开更多
In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the c...In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.展开更多
How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared ...How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared Cu-Mg alloyed thin films to study light element Mg alloying effects on the microstructure,hardness and strain rate sensitivity(SRS) of nanocrystalline Cu thin films.In the studied Mg concentrationrange spanning from 0 at.% to 16.8 at.%,both the grain size and the twin spacing decrease monotonously with increasing Mg composition while Cu-2.8 at.% Mg sample has the highest twin fraction of ~75%.A combined strengthening model was employed to quantify the Mg concentration-dependent hardness of nanotwinned(NT) Cu-Mg thin films,in which the grain/twin boundary facilitates strengthening while the solute Mg atoms induce softening.Both the constant rate of loading tests and the nanoindentation creep tests uncover that compared with pure Cu samples,the NT Cu-Mg thin films manifest much lower SRS,particularly in the creep tests,owing to the activation of dynamic strain aging effects.展开更多
In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,an...In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles.展开更多
Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far...Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far.In this study,the issue was systematically investigated by utilizing cold forging to impose severe plastic deformation(SPD)on Ti-11 V metastableβ-Ti alloys.It is found that the formation of kink bands experiences dislocation gliding,pre-kinking and the ripening of pre-kinks in sequences.The kink bands are subsequently thickened through the coalescence of multiple kink bands in a manner of high accommodation.Ordinary dislocation slip is developed as a dominant deformation mechanism when deformation kinking is exhausted.The resulting grain refinement involves transverse breakdown and longitudinal splitting of dislocation walls and cells,which fragment kink bands into smallβ-blocks.Further refinement of theβ-blocks is still governed by dislocation activities,and finally nanograins with a diameter of~15 nm are produced at a large strain of 1.2.Alternatively,it is revealed that nanocrystallization is highly localized inside kink bands while the outer microstructure maintains original coarse structures.Such localized refinement characterization is ascribed to the intrinsic soft nature of kink bands,shown as low hardness in nanoindentation testing.The intrinsic softening of kink bands is uncovered to originate from the inner degraded dislocation density evidenced by both experimental measurement and theoretical calculation.These findings enrich fundamental understanding of deformation kinking,and shed some light on exploring the deformation accommodation mechanisms for metal materials at large strains.展开更多
To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb a...To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb alloy need to be conducted.In this work,a hetero-structured Zr-2.5Nb alloy was prepared by applying a novel technique.Microstructure analysis reveals that the alloy exhibits a grain sizedependent martensite substructure transition during post-rolling quenching.The hetero-structure consists of equiaxed primaryαgrains and the lamellae groups containing both parallelα’dislocation martensite andα’twin martensite.Compared with the previously reported Zr-Nb alloys,the present Zr-2.5Nb alloys manifest the highest yield strength(∼710 MPa),together with a high ultimate tensile strength(∼844 MPa)and good ductility(∼17.1%).The enhanced mechanical properties are found to arise from the properly controlled fraction/size of the two types of martensite,which not only significantly strengthens the alloy but also contributes to a stronger strain hardening.A model based on the grain-size-dependent critical resolved shear stress for dislocation slip and twinning has been proposed to explain theα’martensite substructures transition at a critical grain size dc=3.3μm.Below this size,the critical resolved shear stress(CRSS)for twinning is higher than that for the<c+a>slip.Thus,theα’dislocation martensite is more favorable to form.Otherwise,theα’twin martensite would exhibit a high activity.The present work indicates that making use of the grain size-dependent martensite transformation to tailor the heterostructure in Zr alloys is an effective strategy to overcome the strength–ductility trade-off in the material.展开更多
Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior...Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior of the alloy.Pure Mo,annealed at 1500℃ for 1 h,presented a fully recrystallized microstructure characterized by equiaxed grains.The alloys doped with La_(2)O_(3)particles(Mo-La_(2)O_(3)alloys),on the other hand,exhibited fibrous grains elongated in the rolling direction of the plate.In contrast to the shape of the grains,the average grain size of the alloys was found to be insensitive to the addition of La_(2)O_(3)particles.Nanosized La_(2)O_(3)particles with diameters ranging from 65 to 75 nm were distributed within the grain interior.Tensile creep tests showed that dislocation creep was the predominant deformation mode at intermediate creep rate(10^(-7)s^(-1)-10^(-4)s^(-1)) in the present alloys.The creep stress exponent and activation energy were found to decrease with increasing temperature,particularly within the low creep rate regime(<10^(-7)s^(-1)).The Mo-La_(2)O_(3)alloys exhibited remarkably greater apparent stress exponent and activation energy than pure Mo.A creep constitutive model based on the interaction between particles and dislocations was utilized to rationalize the nanoparticle-improved creep behavior.It was demonstrated that low relaxed efficiency of dislocation line energy,which is responsible for an enhanced climb resistance of dislocations,is the major creep strengthening mechanism in the Mo-La_(2)O_(3)alloys.In addition,the area reduction and creep fracture mode of the Mo-La_(2)O_(3)alloys were found to be a function of the creep rate and temperature,which can be explained by the effect of the two parameters on the creep and fracture mechanisms.展开更多
文摘A simple constitutive model,called semi-implicit model,for cyclic loading is proposed for steel materials used for structures such as building frames in civil engineering.The constitutive model is implemented in the E-Simulator,which is a software package for large-scale seismic response analysis.The constitutive relation is defined in an algorithmic manner based on the piecewise linear combined isotropic-kinematic hardening.Different rules are used for the first and subsequent loading states to incorporate characteristics such as yield plateau and Bauschinger effect of rolled mild steel materials.An optimization method is also presented for parameter identification from the results of cyclic and monotonic loading tests.Therefore,the proposed model is readily applicable to practical elastoplastic analysis of building frames.Accuracy of the model is demonstrated in an example of a cantilever subjected to various types of cyclic loading.
基金supported by the National System of Layer Producing Technology (nycytx-41)
文摘The objective of this study was to in- vestigate the effect of dietary protein level on nitrogen retention and compare nitrogen metabolism in Lohm- ann Brown adult roosters and layers. The nitrogen ma- intenance requirement (Nm ) was determined based on the nitrogen balance. Thirty Lohmann Brown adult roosters and 30 laying hens at 27 weeks of age were randomly divided into five groups of six birds per group. The birds were fed with one of five diets con- taining 10.46%, 11.77%, 13.79%, 16.77% or 18.29% of crude protein. Nitrogen intake, nitrogen retention and nitrogen retention efficiency were higher in roost- ers than in laying hens, and the average nitrogen re- tention rate for groups fed with CP level of 11.77%, 13.79%, 16.77% and 18. 29% was improved by9.14%. The nitrogen maintenance requirement for Lohmann Brown roosters and laying hens at 27 weeks of age were 0.4245 g/d and 0.5059 g/d, respective- ly, and Nm based on average body weight (BW) and metabolic body weight ( BW^Ts ) was 0.2364 g/kg BW and 0. 2739 g/kg BW~'75 for laying hens and 0. 2754 g/kg BW and 0. 3208 g/kg BW^72 for roost- ers, respectively. The regression equations for daily N gain (NB, protein accretion) vs. daily N intake (NI ) for Lohrnann Brown layers and roosters were NB = 0.3743NI -0.1589(R2 =0.79) and NB =0.6228NI - 0.3151 ( R2 = 0.85 ), respectively. The results of this study indicate that nitrogen intake and nitrogen reten- tion at the same dietary CP level were higher in roost- ers than in laying hens.
文摘During the last two decades, III-nitride-based quantum dots(QDs) have attracted great attentions for optoelectronic applications due to their unique electronic properties. In this paper, we first present an overview on the techniques of fabrication for III-nitride-based QDs. Then various optoelectronic devices such as QD lasers, QD light-emitting diodes(LEDs), QD infrared photodetectors(QDIPs) and QD intermediate band(QDIB) solar cells(SCs) are discussed. Finally, we focus on the future research directions and how the challenges can be overcome.
基金supported by the National Key R&D Program of China under Contract No.2022YFA1602200the International Partnership Program of the Chineses Academy of Sciences under Grant No.211134KYSB20200057the STCF Key Technology Research and Development Project.
文摘The superτ-charm facility(STCF)is an electron–positron collider proposed by the Chinese particle physics community.It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5×10^(35) cm^(–2)·s^(–1) or higher.The STCF will produce a data sample about a factor of 100 larger than that of the presentτ-charm factory—the BEPCII,providing a unique platform for exploring the asymmetry of matter-antimatter(charge-parity violation),in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions,as well as searching for exotic hadrons and physics beyond the Standard Model.The STCF project in China is under development with an extensive R&D program.This document presents the physics opportunities at the STCF,describes conceptual designs of the STCF detector system,and discusses future plans for detector R&D and physics case studies.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金Supported in part by the National Key R&D Program of China(2020YFA0406400,2020YFA0406300,2023YFA1606000)the National Natural Science Foundation of China(123B2077,12035009,11635010,11735014,11875054,11935015,11935016,11935018,11961141012,12025502,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017,12361141819)+8 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Program,the CAS Center for Excellence in Particle Physics(CCEPP),the Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U2032104,U1832207)the Excellent Youth Foundation of Henan Scientific Commitee(242300421044)100 Talents Program of CASthe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and Cosmology,German Research Foundation DFG(455635585,FOR5327,GRK 2149)Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of Mongolia,National Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907),the Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘We present a measurement of the integrated luminosity of e^(+)e^(-)collision data collected by the BESIII detector at the BEPCII collider at a center-of-mass energy of Ecm=3.773 GeV.The integrated luminosities of the datasets taken from December 2021 to June 2022,from November 2022 to June 2023,and from October 2023 to February 2024 were determined to be 4.995±0.019 fb^(-1),8.157±0.031 fb^(-1),and 4.191±0.016 fb^(-1),respectively,by analyzing large angle Bhabha scattering events.The uncertainties are dominated by systematic effects,and the statistical uncertainties are negligible.Our results provide essential input for future analyses and precision measurements.
基金Supported in part by National Key Research and Development Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+12 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CAS,INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology,ERC(758462)European Union Horizon 2020 research and innovation programme(Marie Sklodowska-Curie grant agreement No 894790)German Research Foundation DFG(443159800)Collaborative Research Center CRC 1044,FOR 2359,FOR 2359,GRK 214Istituto Nazionale di Fisica Nucleare,Italy,Ministry of Development of Turkey(DPT2006K-120470)National Science and Technology fund,Olle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research Council,U.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘During the 2016-17 and 2018-19 running periods,the BESIII experiment collected 7.5 fb of e^(+)e^(-)collision data at center-of-mass energies ranging from 4.13 to 4.44 GeV.These data samples are primarily used for the study of excited charmonium and charmoniumlike states.By analyzing the di-muon process e^(+)e^(-)→(γISR=FSR)μ^(+)μ^(-),we measure the center-of-mass energies of the data samples with a precision of 0.6 MeV.Through a run-by-run study,we find that the center-of-mass energies were stable throughout most of the data-collection period.
基金Supported in part by National Key Basic Research Program of China (2015CB856700)National Natural Science Foundation of China (NSFC) (11335008,11425524, 11625523, 11635010, 11735014, 11822506, 11935018)+18 种基金the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics (CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (U1532257, U1532258, U1732263)CAS Key Research Program of Frontier Science (QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040)100 Talents Program of CASCAS PIFIthe Thousand Talents Program of ChinaIN-PAC and Shanghai Key Laboratory for Particle Physics and CosmologyGerman Research Foundation DFG under Contracts NosCollaborative Research Center CRC 1044, FOR 2359Istituto Nazionale di Fisica Nucleare, ItalyKoninklijke Nederlandse Akademie van Wetenschappen (KNAW) (530-4CDP03)Ministry of Development of Turkey (DPT2006K-120470)National Science and Technology fundThe Knut and Alice Wallenberg Foundation (Sweden) (2016.0157)The Swedish Research CouncilU. S. Department of Energy (DE-FG02-05ER41374, DESC-0010118, DE-SC-0012069)University of Groningen (Ru G) and the Helmholtzzentrum fuer Schwerionenforschung Gmb H (GSI), Darmstadtthe Russian Ministry of Science and Higher Education (14.W03.31.0026).
文摘There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a plethora of charmonium-like XYZ states at BESⅢ and B factories, and the observation of an intriguing proton-antiproton threshold enhancement and the possibly related X(1835) meson state at BESⅢ, as well as the threshold measurements of charm mesons and charm baryons. We present a detailed survey of the important topics in tau-charm physics and hadron physics that can be further explored at BESⅢ during the remaining operation period of BEPCⅡ. This survey will help in the optimization of the data-taking plan over the coming years, and provides physics motivation for the possible upgrade of BEPCⅡ to higher luminosity.
基金Supported in part by National Key Basic Research Program of China(2015CB856700)National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U 1732263,U 1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSWSLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)German Research Foundation DFG under Contracts Nos.Collaborative Research Center CRC 1044,FOR 2359Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development o f Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DEFG02-05ER41374,DE-SC-0012069)。
文摘Using a dedicated data sample taken in 2018 on the J/ψpeak,we perform a detailed study of the trigger efficiencies of the BESIII detector.The efficiencies are determined from three representative physics processes,namely Bhabha scattering,dimuon production and generic hadronic events with charged particles.The combined efficiency of all active triggers approaches 100%in most cases,with uncertainties small enough not to affect most physics analyses.
基金supported by the Research Grant Council(RGC),Hong Kong Government,through the General Research Fund(GRF)with the grant number City U11213118 and City U11209317。
文摘In this work,we demonstrate that the corrosion resistance of the FeCrNiCoNb_(0.5) eutectic high entropy alloy(EHEA)can be tuned by controlling the size of its eutectic structure.Through microstructure refinement,the EHEA exhibits a superb corrosion resistance in 1 M NaCl in terms of a very low corrosion current density and an ultra-high transpassviation potential,which outperforms a variety of other HEAs and conventional metals and alloys.At the fundamental level,the microstructure refinement results in a rapid formation of a thick and compact passive film with less Cl-adsorption on the EHEA,which results in significant enhancement in its corrosion resistance.The outcome of our research provides important insights into the design of corrosion resistant chemically complex alloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.51722104,51790482,51621063 and 51625103)the 111 Project 2.0 of China(PB2018008)+1 种基金the National Key Research and Development Program of China(2017YFA0700701)the Fundamental Research Funds for the Central Universities for part of financial support(xtr022019004)。
文摘Alloying is an effective strategy to tailor microstructure and mechanical properties of metallic materials to overcome the strength-ductility trade-off dilemma.In this work,we combined a novel alloy design principle,i.e.harvesting pronounced solid solution hardening(SSH)based on the misfit volumes engineering,and simultaneously,architecting the ductile matrix based on the valence electron concentrations(VEC)criterion,to fulfill an excellent strength-ductility synergy for the newly emerging high/medium-entropy alloys(HEAs/MEAs).Based on this strategy,Al/Ta co-doping within NiCoCr MEA leads to an efficient synthetic approach,that is minor Al/Ta co-doping not only renders significantly enhanced strength with notable SSH effect and ultrahigh strain-hardening capability,but also sharply refines grains and induces abnormal twinning behaviors of(NiCoCr)_(92)Al_(6)Ta_(2) MEA.Compared with the partially twinned NiCoCr MEA,the yield strength(σy)and ultimate tensile strength(σUTS)of fully twinned Al/Ta-containing MEA were increased by~102%to~600 MPa and~35%to~1000 MPa,respectively,along with good ductility beyond 50%.Different from the NiCoCr MEA with deformation twins(DTs)/stacking faults(SFs)dominated plasticity,the extraordinary strain-hardening capability of the solute-hardened(NiCoCr)_(92)Al_(6)Ta_(2) MEA,deactivated deformation twinning,originates from the high density of dislocation walls,microbands and abundance of SFs.The abnormal twinning behaviors,i.e.,prevalence of annealing twins(ATs)but absence of DTs in(NiCoCr)_(92)Al_(6)Ta_(2) MEA,are explained in terms of the relaxation of grain boundaries(for ATs)and the twinning mechanism transition(for DTs),respectively.
基金financially supported by the National Natural Science Foundation of China(Nos.51621063,51625103,51722104,51790482,51761135031 and 51871033)the National Key Research and Development Program of China(No.2016YFB0700403)+1 种基金the 111 Project of China(No.BP2018008)supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies.
文摘It is generally considered that the Al3Sc nanoprecipitates are highly thermal stable,mainly due to quite slow Sc diffusion in theα-Al matrix.In this paper,we demonstrate in an Al-Cu-Sc alloy that the Cu atoms have dual effect on the coarsening of Al3Sc nanoprecipitates.On the one hand,the Cu atoms with high diffusivity tend to accelerate the Al3Sc coarsening,which results from the Cu-promoted Sc diffusion.On the other hand,some Cu atoms will segregate at the Al3Sc/matrix interface,which further stabilizes the Al3Sc nanoprecipitates by reducing the interfacial energy.Competition between these two effects is tailored by temperature,which rationalizes the experimental findings that the coarsening kinetics of Al3Sc nanoprecipitate is greatly boosted at 300℃-overaging while significantly suppressed at 400℃-overaging.
基金supported by the National Natural Science Foundation of China(Nos.92163201,U2067219,51722104,51790482,and 51761135031)the National Key Research and Devel-opment Program of China(No.2017YFA0700701)+1 种基金the 111 Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(No.xtr022019004).
文摘In this work,we designed a novel NiCoCr-based medium-entropy alloy(MEA)strengthened by coher-ent L12-nanoparticles,i.e.,(NiCoCr)92 Al 6 Ta 2(at.%).The strengthening and deformation mechanisms of the material and the coarsening kinetics of the coherent precipitates were systematically investigated.The results indicated that giant precipitation hardening and its synergy with other strengthening contributors confer on the aged material a yield strength as high as 1.0 GPa.Moreover,a unique particle-features-dependent plasticity mechanism was revealed in this alloy.That is,the alloy with a lower volume frac-tion,denser distribution,and finer particles mainly deformed by dislocation planar slip,otherwise,stack-faults-mediated plasticity was favored,rationalized by the cooperative/competitive effect of stack-fault energy,spatial confinement,and applied stress.Furthermore,the coarsening behavior of precipitate fol-lowed a modified Lifshitz-Slyozov-Wagner(LSW)model,and the nanoparticles displayed remarkably su-perior thermal stability compared to most traditional superalloys and reported multicomponent alloys.The superb coarsening resistance of precipitate originated from the coupled effect of intrinsic sluggish diffusion in multi-principal alloys and the dual-roles of Ta species as a precipitate stabilizer.This work provides a new pathway to develop strong-yet-ductile multicomponent alloys as promising candidates for high-temperature applications.
基金financially supported by the National Key Research and Development Program of China (No. 2017YFA0700701)the National Natural Science Foundation of China (Nos. 51722104, 51625103, 51790482 and 51761135031)+5 种基金the “111 Project 2.0 of China” (No. BP2018008)the Fok Ying-Tong Education Foundation (No. 161096)the Fundamental Research Funds for the Central Universities for part of the financial supportthe financial support by the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2018002)the National Defense Basic Scientific Research Programthe Fundamental Research Funds for the Central Universities (2020CDJDCL001)。
文摘How to design ultra-strong,light-weight Cu alloys is a long-term pursuit in materials community,which is technically superior and cost-effective for their promising energy-saving applications.In this work,we prepared Cu-Mg alloyed thin films to study light element Mg alloying effects on the microstructure,hardness and strain rate sensitivity(SRS) of nanocrystalline Cu thin films.In the studied Mg concentrationrange spanning from 0 at.% to 16.8 at.%,both the grain size and the twin spacing decrease monotonously with increasing Mg composition while Cu-2.8 at.% Mg sample has the highest twin fraction of ~75%.A combined strengthening model was employed to quantify the Mg concentration-dependent hardness of nanotwinned(NT) Cu-Mg thin films,in which the grain/twin boundary facilitates strengthening while the solute Mg atoms induce softening.Both the constant rate of loading tests and the nanoindentation creep tests uncover that compared with pure Cu samples,the NT Cu-Mg thin films manifest much lower SRS,particularly in the creep tests,owing to the activation of dynamic strain aging effects.
基金financially supported by the National Natural Science Foundation of China(Nos.U2067219,51722104,51790482,51761135031 and 92163201)the National Key Research and Development Program of China(No.2017YFA0700701)+1 种基金the 111 Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(No.xtr022019004)。
文摘In this work,we prepare transformable HEA/Cu nanolaminates(NLs)with equal individual layer thick-ness(h)by the magnetron sputtering technique,i.e.,Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu and Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu,and comparatively study He-ion irradiation effects on their microstructure and mechanical properties.It ap-pears that the as-deposited HEA/Cu NLs manifest two size h-dependent hardness regimes(i.e.,increased hardness at small h and hardness plateau at large h),while the He-implanted ones exhibit monotonically increased hardness.Contrary to the fashion that smaller h renders less irradiation hardening in bimetal NLs,the Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs manifest the trend that smaller h leads to greater irradiation hard-ening.By contrast,the Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs exhibit the maximum irradiation hardening at a critical h=50 nm.Below this critical size,smaller h results in lower radiation hardening(similar to bimetal NLs),while above this size,smaller h results in greater radiation hardening(similar to Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs).Moreover,these transformable HEA/Cu NLs display inverse h-dependent strain rate sensitivity(SRS m)before and after He-ion irradiation.Nevertheless,compared with as-deposited samples,the irradi-ated Fe_(50)Mn_(30)Co_(10)Cr_(10)/Cu NLs display reduced SRS,while the irradiated Fe_(50)Mn_(30)Co_(10)Ni_(10)/Cu NLs dis-play enhanced SRS.Such unusual size-dependent irradiation strengthening and inverse h effect on SRS in irradiated samples were rationalized by considering the blocking effects of He bubbles on dislocation nucleation and motion,i.e.,dislocations shearing or bypassing He bubbles.
基金supported by the National Natural Science Foundation of China(Nos.51871176,51722104,51922017,51972009)the National Key Research and Development Program of China(Nos.2017YFA0700701,2017YFB0702301)+2 种基金the 111 Project 2.0 of China(No.PB2018008)Natural Science Basic Research Plan in Shaanxi Province of China(No.2018JM5098)the Fundamental Research Funds for the Central Universities(No.xtr022019004)。
文摘Deformation kinking as an uncommon plastic deformation mechanism has been reported in several materials while the relevant microstructure evolution and grain refinement behavior at a large strain remain unclear so far.In this study,the issue was systematically investigated by utilizing cold forging to impose severe plastic deformation(SPD)on Ti-11 V metastableβ-Ti alloys.It is found that the formation of kink bands experiences dislocation gliding,pre-kinking and the ripening of pre-kinks in sequences.The kink bands are subsequently thickened through the coalescence of multiple kink bands in a manner of high accommodation.Ordinary dislocation slip is developed as a dominant deformation mechanism when deformation kinking is exhausted.The resulting grain refinement involves transverse breakdown and longitudinal splitting of dislocation walls and cells,which fragment kink bands into smallβ-blocks.Further refinement of theβ-blocks is still governed by dislocation activities,and finally nanograins with a diameter of~15 nm are produced at a large strain of 1.2.Alternatively,it is revealed that nanocrystallization is highly localized inside kink bands while the outer microstructure maintains original coarse structures.Such localized refinement characterization is ascribed to the intrinsic soft nature of kink bands,shown as low hardness in nanoindentation testing.The intrinsic softening of kink bands is uncovered to originate from the inner degraded dislocation density evidenced by both experimental measurement and theoretical calculation.These findings enrich fundamental understanding of deformation kinking,and shed some light on exploring the deformation accommodation mechanisms for metal materials at large strains.
基金financially supported by the National Natural Science Foundation of China(Nos.92163201,U2067219,51722104,51790482,51801147,and 51761135031)the National Key Research and Development Program of China(No.2017YFA0700701)+1 种基金the 111Project 2.0 of China(No.BP2018008)the Fundamental Research Funds for the Central Universities(Nos.xtr022019004 and xzy022021014)。
文摘To further improve the service performance of Zr-2.5Nb alloy worked as pressure tubes in pressurized heavy water reactors,more investigation about the microstructure and thermomechanical processing route of Zr-2.5Nb alloy need to be conducted.In this work,a hetero-structured Zr-2.5Nb alloy was prepared by applying a novel technique.Microstructure analysis reveals that the alloy exhibits a grain sizedependent martensite substructure transition during post-rolling quenching.The hetero-structure consists of equiaxed primaryαgrains and the lamellae groups containing both parallelα’dislocation martensite andα’twin martensite.Compared with the previously reported Zr-Nb alloys,the present Zr-2.5Nb alloys manifest the highest yield strength(∼710 MPa),together with a high ultimate tensile strength(∼844 MPa)and good ductility(∼17.1%).The enhanced mechanical properties are found to arise from the properly controlled fraction/size of the two types of martensite,which not only significantly strengthens the alloy but also contributes to a stronger strain hardening.A model based on the grain-size-dependent critical resolved shear stress for dislocation slip and twinning has been proposed to explain theα’martensite substructures transition at a critical grain size dc=3.3μm.Below this size,the critical resolved shear stress(CRSS)for twinning is higher than that for the<c+a>slip.Thus,theα’dislocation martensite is more favorable to form.Otherwise,theα’twin martensite would exhibit a high activity.The present work indicates that making use of the grain size-dependent martensite transformation to tailor the heterostructure in Zr alloys is an effective strategy to overcome the strength–ductility trade-off in the material.
基金supported by the National Natural Science Foundation of China (Grant Nos.,51801147,and 51901173)supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies。
文摘Molybdenum(Mo) alloys with different La_(2)O_(3)particle additions(0.6,0.9,1.5 wt.%) were prepared by powder metallurgy to investigate the effect of La_(2)O_(3)particles on microstructural evolution and creep behavior of the alloy.Pure Mo,annealed at 1500℃ for 1 h,presented a fully recrystallized microstructure characterized by equiaxed grains.The alloys doped with La_(2)O_(3)particles(Mo-La_(2)O_(3)alloys),on the other hand,exhibited fibrous grains elongated in the rolling direction of the plate.In contrast to the shape of the grains,the average grain size of the alloys was found to be insensitive to the addition of La_(2)O_(3)particles.Nanosized La_(2)O_(3)particles with diameters ranging from 65 to 75 nm were distributed within the grain interior.Tensile creep tests showed that dislocation creep was the predominant deformation mode at intermediate creep rate(10^(-7)s^(-1)-10^(-4)s^(-1)) in the present alloys.The creep stress exponent and activation energy were found to decrease with increasing temperature,particularly within the low creep rate regime(<10^(-7)s^(-1)).The Mo-La_(2)O_(3)alloys exhibited remarkably greater apparent stress exponent and activation energy than pure Mo.A creep constitutive model based on the interaction between particles and dislocations was utilized to rationalize the nanoparticle-improved creep behavior.It was demonstrated that low relaxed efficiency of dislocation line energy,which is responsible for an enhanced climb resistance of dislocations,is the major creep strengthening mechanism in the Mo-La_(2)O_(3)alloys.In addition,the area reduction and creep fracture mode of the Mo-La_(2)O_(3)alloys were found to be a function of the creep rate and temperature,which can be explained by the effect of the two parameters on the creep and fracture mechanisms.