Based on the“unidirectional break-up and convergence”geodynamic model,this study investigates the impact of the evolution of the Tethyan domain on the formation of petroleum systems in the Sichuan super basin and ex...Based on the“unidirectional break-up and convergence”geodynamic model,this study investigates the impact of the evolution of the Tethyan domain on the formation of petroleum systems in the Sichuan super basin and explores the enrichment pattern of natural gas.The results show that,firstly,the Sichuan Basin and its surrounding areas have experienced two unidirectional rifting-aggregation cycles triggered by the Proto-Tethys Ocean and the Paleo-Tethys Ocean during the Neoproterozoic to Triassic.During Jurassic–Cenozoic,the Sichuan Basin is incorporated in the circum-Tibetan plateau basin-mountain coupled tectonic domain system.The episodic tectonic movements within the plate control the sedimentary infill styles.Second,the evolution of the Tethyan domain,paleoclimatic environment and major geological events controlled the formation and distribution of high-quality source rocks within the basin.The rift valley and intracratonic rift,passive continental margin slope,and intracratonic sags are favorable areas for the development of source rocks.Third,the evolution of the Tethyan domain,supercontinent cycles,global sea level changes,and tectono-climatic events controlled the distribution of carbonate platform and reservoir-caprock combinations.The cratonic platform margins and sub-platform internal high terrains are key areas for finding carbonate high-energy facies belts.Syndepositional paleo-uplifts and surrounding slopes,regional unconformities,and later faults zone are areas where large-scale carbonate reservoirs are distributed.The regional evaporite or shale caprock are beneficial for the large-scale preservation of oil and gas in the basin.Fourth,the spatio-temporal matching relationship of reservoir forming factors influenced by the early tectonic-sedimentary evolution pattern and the degree of later tectonic modification is the key to oil and gas enrichment.Future oil and gas exploration should focus on potential gas systems during the Sinian rift period,Cambrian pre-salt gas systems in the eastern and southern Sichuan,as well as whole oil and gas systems of Permian and Triassic.展开更多
Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the...Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins.展开更多
Hydraulic fracturing is a key technology in shale gas extraction,whether hydraulic fracturing induces earthquakes has become a hot topic in the public and the focus of scholars’research.The urgency of shale gas minin...Hydraulic fracturing is a key technology in shale gas extraction,whether hydraulic fracturing induces earthquakes has become a hot topic in the public and the focus of scholars’research.The urgency of shale gas mining and the catastrophic nature of earthquakes highlight the urgent need to study this issue.The Changning anticline at the southern margin of the Sichuan Basin is a key area for shale gas exploitation.Taking this as an example,this paper applies the velocity model of the study area to reposition the M5.7 magnitude earthquake on December 16,2018 and the M5.3 magnitude earthquake on January 03,2019 and their aftershock sequence in this area.Using shale gas exploration drilling and reflection seismic data to carry out structural analysis,and recovering the tectonic geological setting of earthquake occurrence by restoring the formation process of the Changning anticline,to further explore the seismic mechanism.Our results show that the Changning anticline is a large basement fault-bend fold,and the displacement of the fault forming the anticline is 18 km,and the Changning anticline absorbs 33%of the fault slip.The Silurian Longmaxi Formation of the Changning anticline experienced larger-parallel shearing along underlying basement faults,forming a micro-fracture system.The footwall ramp of the basement fault is reactivated at present,earthquakes in this area mostly occur along the footwall ramp of the basement fault and above and below it.The anticlinal and synclinal hinge zones are also the earthquake concentration areas,but the earthquake magnitude decreases upwards along the kink-band,and small earthquakes below M2.0 occur in the Silurian Longmaxi Formation.So far,the earthquake in the Changning anticline mainly occurred in the southern limb of the anticline,which is a natural earthquake formed along the footwall ramp of the basement fault.The earthquakes in the Changning area are possible related to the geo-tectonic setting for the southeast outward compression of the Qinghai-Tibet Plateau at present,the moderate or large-scale earthquakes in the southwest Sichuan Basin are mainly due to the reactivation during late Quaternary of the earlier formed faults.It is suggested to carry out scientific monitoring of seismic activities in shale gas development zones.展开更多
In recent years, natural gas exploration in the Sinian Dengying Formation and shale gas exploration in Doushantuo Formation have made major breakthroughs in the Sichuan Basin and its adjacent areas. However, the sedim...In recent years, natural gas exploration in the Sinian Dengying Formation and shale gas exploration in Doushantuo Formation have made major breakthroughs in the Sichuan Basin and its adjacent areas. However, the sedimentary background of the Doushantuo Formation hasn't been studied systematically. The lithofacies paleogeographic pattern, sedimentary environment, sedimentary evolution and distribution of source rocks during the depositional stage of Doushantuo Formation were systematically analyzed by using a large amount of outcrop data, and a small amount of drilling and seismic data.(1) The sedimentary sequence and stratigraphic distribution of the Sinian Doushantuo Formation in the middle-upper Yangtze region were controlled by paleouplifts and marginal sags. The Doushantuo Formation in the paleouplift region was overlayed with thin thickness, including shore facies, mixed continental shelf facies and atypical carbonate platform facies. The marginal sag had complete strata and large thickness, and developed deep water shelf facies and restricted basin facies.(2) The Doushantuo Formation is divided into four members from bottom to top, and the sedimentary sequence is a complete sedimentary cycle of transgression–high position–regression. The first member is atypical carbonate gentle slope deposit in the early stage of the transgression, the second member is shore-mixed shelf deposit in the extensive transgression period, and the third member is atypical restricted–open sea platform deposit of the high position of the transgression.(3) The second member has organic-rich black shale developed with stable distribution and large thickness, which is an important source rock interval and major shale gas interval. The third member is characterized by microbial carbonate rock and has good storage conditions which is conducive to the accumulation of natural gas, phosphate and other mineral resources, so it is a new area worthy of attention. The Qinling trough and western Hubei trough are favorable areas for exploration of natural gas(including shale gas) and mineral resources such as phosphate and manganese ore.展开更多
基金Supported by the National Natural Science of China(U22B6002)National Natural Science Foundation of China(U2344209)Major Science and Technology Project of PetroChina(2023ZZ02)。
文摘Based on the“unidirectional break-up and convergence”geodynamic model,this study investigates the impact of the evolution of the Tethyan domain on the formation of petroleum systems in the Sichuan super basin and explores the enrichment pattern of natural gas.The results show that,firstly,the Sichuan Basin and its surrounding areas have experienced two unidirectional rifting-aggregation cycles triggered by the Proto-Tethys Ocean and the Paleo-Tethys Ocean during the Neoproterozoic to Triassic.During Jurassic–Cenozoic,the Sichuan Basin is incorporated in the circum-Tibetan plateau basin-mountain coupled tectonic domain system.The episodic tectonic movements within the plate control the sedimentary infill styles.Second,the evolution of the Tethyan domain,paleoclimatic environment and major geological events controlled the formation and distribution of high-quality source rocks within the basin.The rift valley and intracratonic rift,passive continental margin slope,and intracratonic sags are favorable areas for the development of source rocks.Third,the evolution of the Tethyan domain,supercontinent cycles,global sea level changes,and tectono-climatic events controlled the distribution of carbonate platform and reservoir-caprock combinations.The cratonic platform margins and sub-platform internal high terrains are key areas for finding carbonate high-energy facies belts.Syndepositional paleo-uplifts and surrounding slopes,regional unconformities,and later faults zone are areas where large-scale carbonate reservoirs are distributed.The regional evaporite or shale caprock are beneficial for the large-scale preservation of oil and gas in the basin.Fourth,the spatio-temporal matching relationship of reservoir forming factors influenced by the early tectonic-sedimentary evolution pattern and the degree of later tectonic modification is the key to oil and gas enrichment.Future oil and gas exploration should focus on potential gas systems during the Sinian rift period,Cambrian pre-salt gas systems in the eastern and southern Sichuan,as well as whole oil and gas systems of Permian and Triassic.
基金National Science and Technology Major Project(2016ZX05004-001)China National Petroleum Corporation Science and Technology Project(2021DJ02)。
文摘Based on the contemporary strategy of Petro China and the“Super Basin Thinking”initiative,we analyze the petroleum system,the remaining oil and gas resource distribution,and the Super Basin development scheme in the Sichuan Basin with the aim of unlocking its full resource potential.We conclude that,(1)The three-stage evolution of the Sichuan Basin has resulted in the stereoscopic distribution of hydrocarbon systems dominated by natural gas.The prospecting Nanhua-rift stage gas system is potentially to be found in the ultra-deep part of the basin.The marine-cratonic stage gas system is distributed in the Sinian to Mid-Triassic formations,mainly conventional gas and shale gas resources.The foreland-basin stage tight sand gas and shale oil resources are found in the Upper Triassic-Jurassic formations.Such resource base provides the foundation for the implementation of Super Basin paradigm in the Sichuan Basin.(2)To ensure larger scale hydrocarbon exploration and production,technologies regarding deep to ultra-deep carbonate reservoirs,tight-sand gas,and shale oil are necessarily to be advanced.(3)In order to achieve the full hydrocarbon potential of the Sichuan Basin,pertinent exploration strategies are expected to be proposed with regard to each hydrocarbon system respectively,government and policy supports ought to be strengthened,and new cooperative pattern should be established.Introducing the“Super Basin Thinking”provides references and guidelines for further deployment of hydrocarbon exploration and production in the Sichuan Basin and other developed basins.
基金Supported by the National Natural Science Foundation of China(41430316,40739906,41272237).
文摘Hydraulic fracturing is a key technology in shale gas extraction,whether hydraulic fracturing induces earthquakes has become a hot topic in the public and the focus of scholars’research.The urgency of shale gas mining and the catastrophic nature of earthquakes highlight the urgent need to study this issue.The Changning anticline at the southern margin of the Sichuan Basin is a key area for shale gas exploitation.Taking this as an example,this paper applies the velocity model of the study area to reposition the M5.7 magnitude earthquake on December 16,2018 and the M5.3 magnitude earthquake on January 03,2019 and their aftershock sequence in this area.Using shale gas exploration drilling and reflection seismic data to carry out structural analysis,and recovering the tectonic geological setting of earthquake occurrence by restoring the formation process of the Changning anticline,to further explore the seismic mechanism.Our results show that the Changning anticline is a large basement fault-bend fold,and the displacement of the fault forming the anticline is 18 km,and the Changning anticline absorbs 33%of the fault slip.The Silurian Longmaxi Formation of the Changning anticline experienced larger-parallel shearing along underlying basement faults,forming a micro-fracture system.The footwall ramp of the basement fault is reactivated at present,earthquakes in this area mostly occur along the footwall ramp of the basement fault and above and below it.The anticlinal and synclinal hinge zones are also the earthquake concentration areas,but the earthquake magnitude decreases upwards along the kink-band,and small earthquakes below M2.0 occur in the Silurian Longmaxi Formation.So far,the earthquake in the Changning anticline mainly occurred in the southern limb of the anticline,which is a natural earthquake formed along the footwall ramp of the basement fault.The earthquakes in the Changning area are possible related to the geo-tectonic setting for the southeast outward compression of the Qinghai-Tibet Plateau at present,the moderate or large-scale earthquakes in the southwest Sichuan Basin are mainly due to the reactivation during late Quaternary of the earlier formed faults.It is suggested to carry out scientific monitoring of seismic activities in shale gas development zones.
基金Supportd by the China National Science and Technology Major Project(2016ZX05004-001)
文摘In recent years, natural gas exploration in the Sinian Dengying Formation and shale gas exploration in Doushantuo Formation have made major breakthroughs in the Sichuan Basin and its adjacent areas. However, the sedimentary background of the Doushantuo Formation hasn't been studied systematically. The lithofacies paleogeographic pattern, sedimentary environment, sedimentary evolution and distribution of source rocks during the depositional stage of Doushantuo Formation were systematically analyzed by using a large amount of outcrop data, and a small amount of drilling and seismic data.(1) The sedimentary sequence and stratigraphic distribution of the Sinian Doushantuo Formation in the middle-upper Yangtze region were controlled by paleouplifts and marginal sags. The Doushantuo Formation in the paleouplift region was overlayed with thin thickness, including shore facies, mixed continental shelf facies and atypical carbonate platform facies. The marginal sag had complete strata and large thickness, and developed deep water shelf facies and restricted basin facies.(2) The Doushantuo Formation is divided into four members from bottom to top, and the sedimentary sequence is a complete sedimentary cycle of transgression–high position–regression. The first member is atypical carbonate gentle slope deposit in the early stage of the transgression, the second member is shore-mixed shelf deposit in the extensive transgression period, and the third member is atypical restricted–open sea platform deposit of the high position of the transgression.(3) The second member has organic-rich black shale developed with stable distribution and large thickness, which is an important source rock interval and major shale gas interval. The third member is characterized by microbial carbonate rock and has good storage conditions which is conducive to the accumulation of natural gas, phosphate and other mineral resources, so it is a new area worthy of attention. The Qinling trough and western Hubei trough are favorable areas for exploration of natural gas(including shale gas) and mineral resources such as phosphate and manganese ore.