Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from...Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.展开更多
The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly...The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly N-S-striking sets of faults. Since 1995, a superlarge brine potash deposit with potash resources of 2.50×10^8s t has been found in the Luobei subbasin in the northeastern part of the Lop Nur. We intensively studied the features and formation mechanism of faults inside the Lop Nur through satellite images, geomorphologic survey and continuous conductivity imaging and found seven subparallel graben faults formed under the action of nearly N 10° E principal compressional stress during deposition of the Lop Nur Salt Lake. These faults are up to 〉60 km long and 1-4 km wide and may extend downward for 1000 m or more. It is just under the action of these tensional faults that potash subbasius formed. The largest subbasin is the Luobei subbasin and the smaller ones are the Luoxi hollow, Erbei hollow and Tienan hollow. Investigation also indicates that the graben faults in the Lop Nur not only control the origin of the potash subbasins, but they themselves are also good brine reservoir structures, in which abundant potash-rich brines are stored. Therefore, The faults had played an important role in the potash formation of the Lop Nur.展开更多
Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seaw...Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.展开更多
Evaporites with gigantic thickness had been developed in Kuqa Basin from Paleocene to early Miocene,and the sediment thickness changed from tens to thousands of meters.By 3D mine software,spatial distribution model of
A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white ...A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white medium- and coarse-grained sandstone in Miocene strata, the formation of copper minerals is in close connection with brine. In joint planes, which are developed in vertical strata, are filled with gypsum. Gypsum and copper-mineralized sandstone contains enormous copper minerals, mainly atacamite. According to the SEM analysis for salt rock, gypsum rock, limestone, grayish green siltstone, grayish white medium-coarse-grained sandstone, some minerals are composed of metallic elements including Au, Ag, Cu, Zn, Pb, Co, Ni and U etc., in which Au occurs in a native form, Cu occurs in a native form or as atacamite in salt rock, gypsum rock and limestone, Ag occurs as silver sulfide in gypsum, and Zn, Pb, Co, Ni, U occur as compounds along with the above metallic ions in evaporate or clastic rock. From SEM images, we can see that metallic elements or their compounds (oxides or sulfides) "take root" as grains in salt or gypsum crystals, which belong to primary chemical sedimentation along with evaporate, while some grains "float" on surface of salt or gypsum. In the former case, mineral grains were formed together with salt (gypsum) crystals; while in the latter case, minerals were enriched from internal metallic ions (Paleogene evaporate samples) or external metallic ions (Neogene gypsum samples) in the late stage of evaporate formation. The metallic ions in Paleogene evaporate samples might originate from weathered or denudated materials in the south Tianshan Mountains. The metallic ions in the Neogene evaporate samples might be from metal- bearing brine, which migrated upward to surface along fractures and leached into evaporate (gypsum). Occurrence of metallic minerals and their compounds (elementary substance) in Paleogene evaporate proves that diversified metallic minerals exist in evaporate. The source of metallic ions in the Neogene evaporate series shows that evaporate could provide materials for late-stage metallic mineralization.展开更多
Objective Lop Nur is one of the world’s largest Quaternary salt lakes and is currently a playa. In this lake, unique giant glauberite deposits occur, of which the intercrystalline pores host super-large liquid potash...Objective Lop Nur is one of the world’s largest Quaternary salt lakes and is currently a playa. In this lake, unique giant glauberite deposits occur, of which the intercrystalline pores host super-large liquid potash deposits. Recently, it has been thought that the potassium-rich brine was formed when the enormous quantity of glauberite deposited. To clarify this issue 14 C dating for brine is used to provide new evidence of chronology illustrating the relationship of potassium-rich brine with the host glauberite rock and improve our understanding of the formation mechanism of the brine in Lop Nur playa.展开更多
基金The Major Projects of Xinjiang Uyghur Autonomous Region of China(Grant Nos.2020A03005-2 and 2022A03009-2)from the Chinese governmentthe National Natural Science Foundation of China(Grant No.40830420)provided the funding for this study。
文摘Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.
文摘The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. Rhombic in shape, the Lop Nur depression is mainly controlled by the NE-striking and nearly N-S-striking sets of faults. Since 1995, a superlarge brine potash deposit with potash resources of 2.50×10^8s t has been found in the Luobei subbasin in the northeastern part of the Lop Nur. We intensively studied the features and formation mechanism of faults inside the Lop Nur through satellite images, geomorphologic survey and continuous conductivity imaging and found seven subparallel graben faults formed under the action of nearly N 10° E principal compressional stress during deposition of the Lop Nur Salt Lake. These faults are up to 〉60 km long and 1-4 km wide and may extend downward for 1000 m or more. It is just under the action of these tensional faults that potash subbasius formed. The largest subbasin is the Luobei subbasin and the smaller ones are the Luoxi hollow, Erbei hollow and Tienan hollow. Investigation also indicates that the graben faults in the Lop Nur not only control the origin of the potash subbasins, but they themselves are also good brine reservoir structures, in which abundant potash-rich brines are stored. Therefore, The faults had played an important role in the potash formation of the Lop Nur.
基金funded by the National Basic Research Program of China(No.2011CB403007)the State Key Program of National Natural Science of China(No.40830420)
文摘Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.
基金national "Twelfth Five-Year" Technology Support Plan (2011BAB06B06) for funds for this paper
文摘Evaporites with gigantic thickness had been developed in Kuqa Basin from Paleocene to early Miocene,and the sediment thickness changed from tens to thousands of meters.By 3D mine software,spatial distribution model of
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions(K0807)granted by the Institutc of Mineral Resources,Chinese Academy of Geological Sciencesthe Scientific and Technical Supporting Project during the National Eleventh Five-Yea Plan Period (2006BAB07B06)
文摘A large-scale evaporate series is developed in Paleogene-Neogene strata in the Kuqa basin. The series is composed mainly of evaporate with thin beds of clastic rock (mainly mudstone and siltstone). In grayish white medium- and coarse-grained sandstone in Miocene strata, the formation of copper minerals is in close connection with brine. In joint planes, which are developed in vertical strata, are filled with gypsum. Gypsum and copper-mineralized sandstone contains enormous copper minerals, mainly atacamite. According to the SEM analysis for salt rock, gypsum rock, limestone, grayish green siltstone, grayish white medium-coarse-grained sandstone, some minerals are composed of metallic elements including Au, Ag, Cu, Zn, Pb, Co, Ni and U etc., in which Au occurs in a native form, Cu occurs in a native form or as atacamite in salt rock, gypsum rock and limestone, Ag occurs as silver sulfide in gypsum, and Zn, Pb, Co, Ni, U occur as compounds along with the above metallic ions in evaporate or clastic rock. From SEM images, we can see that metallic elements or their compounds (oxides or sulfides) "take root" as grains in salt or gypsum crystals, which belong to primary chemical sedimentation along with evaporate, while some grains "float" on surface of salt or gypsum. In the former case, mineral grains were formed together with salt (gypsum) crystals; while in the latter case, minerals were enriched from internal metallic ions (Paleogene evaporate samples) or external metallic ions (Neogene gypsum samples) in the late stage of evaporate formation. The metallic ions in Paleogene evaporate samples might originate from weathered or denudated materials in the south Tianshan Mountains. The metallic ions in the Neogene evaporate samples might be from metal- bearing brine, which migrated upward to surface along fractures and leached into evaporate (gypsum). Occurrence of metallic minerals and their compounds (elementary substance) in Paleogene evaporate proves that diversified metallic minerals exist in evaporate. The source of metallic ions in the Neogene evaporate series shows that evaporate could provide materials for late-stage metallic mineralization.
基金supported by the National Natural Science Foundation of China(Grant No.40830420,41702097,41972092)。
文摘Objective Lop Nur is one of the world’s largest Quaternary salt lakes and is currently a playa. In this lake, unique giant glauberite deposits occur, of which the intercrystalline pores host super-large liquid potash deposits. Recently, it has been thought that the potassium-rich brine was formed when the enormous quantity of glauberite deposited. To clarify this issue 14 C dating for brine is used to provide new evidence of chronology illustrating the relationship of potassium-rich brine with the host glauberite rock and improve our understanding of the formation mechanism of the brine in Lop Nur playa.