We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft ...We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model.We find that most emitted ions are thermal,but that some impurities chemisorbed on the target surface,such as protons,are accelerated by the electrostatic field created in the plasma by escaped electrons.The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures.We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.展开更多
We report the first high-repetition-rate generation and simultaneous characterization of nanosecond-scale return currents of kA-magnitude issued by the polarization of a target irradiated with a PW-class high-repetiti...We report the first high-repetition-rate generation and simultaneous characterization of nanosecond-scale return currents of kA-magnitude issued by the polarization of a target irradiated with a PW-class high-repetition-rate titanium:sapphire laser system at relativistic intensities.We present experimental results obtained with the VEGA-3 laser at intensities from5×10^(18)to 1.3×10^(20)W cm^(-2).A non-invasive inductive return-current monitor is adopted to measure the derivative of return currents of the order of kA ns-1and analysis methodology is developed to derive return currents.We compare the current for copper,aluminium and Kapton targets at different laser energies.The data show the stable production of current peaks and clear prospects for the tailoring of the pulse shape,which is promising for future applications in highenergy-density science,for example,electromagnetic interference stress tests,high-voltage pulse response measurements and charged particle beam lensing.We compare the target discharge of the order of hundreds of nC with theoretical predictions and a good agreement is found.展开更多
This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with diffe...This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.展开更多
文摘We report on an experiment performed at the FLASH2 free-electron laser(FEL)aimed at producing warm dense matter via soft x-ray isochoric heating.In the experiment,we focus on study of the ions emitted during the soft x-ray ablation process using time-of-flight electron multipliers and a shifted Maxwell–Boltzmann velocity distribution model.We find that most emitted ions are thermal,but that some impurities chemisorbed on the target surface,such as protons,are accelerated by the electrostatic field created in the plasma by escaped electrons.The morphology of the complex crater structure indicates the presence of several ion groups with varying temperatures.We find that the ion sound velocity is controlled by the ion temperature and show how the ion yield depends on the FEL radiation attenuation length in different materials.
基金funding from the European Union’s Horizon 2020 research and innovation program through the European IMPULSE project under grant agreement No.871161LASERLABEUROPE V under grant agreement No.871124+5 种基金Grant Agency of the Czech Republic(grant Nos.GM23-05027M and LM2023068)Grant PDC2021120933-I00 funded by MCIN/AEI/10.13039/501100011033 and by the‘European Union Next Generation EU/PRTR’supported by funding from the Ministerio de Ciencia,Innovación y Universidades in Spain through ICTS Equipment grant No.EQC2018-005230Pgrant PID2021-125389OA-I00 funded by MCIN/AEI/10.13039/501100011033/FEDER,UE and by‘ERDF A way of making Europe’by the European Uniongrants of the Junta de Castilla y León,No.CLP263P20 and No.CLP087U16funded by the European Union via the Euratom Research and Training Programme(grant agreement No.101052200-EUROfusion)。
文摘We report the first high-repetition-rate generation and simultaneous characterization of nanosecond-scale return currents of kA-magnitude issued by the polarization of a target irradiated with a PW-class high-repetition-rate titanium:sapphire laser system at relativistic intensities.We present experimental results obtained with the VEGA-3 laser at intensities from5×10^(18)to 1.3×10^(20)W cm^(-2).A non-invasive inductive return-current monitor is adopted to measure the derivative of return currents of the order of kA ns-1and analysis methodology is developed to derive return currents.We compare the current for copper,aluminium and Kapton targets at different laser energies.The data show the stable production of current peaks and clear prospects for the tailoring of the pulse shape,which is promising for future applications in highenergy-density science,for example,electromagnetic interference stress tests,high-voltage pulse response measurements and charged particle beam lensing.We compare the target discharge of the order of hundreds of nC with theoretical predictions and a good agreement is found.
基金the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014–2018 and 2019– 2020 under grant agreement No. 633053the ELI Beamlines Projects LQ1606 and 19-02545S with financial support from the Czech Science Foundation and the Ministry of Education, Youth and Sports of the Czech Republic+6 种基金support from the European Regional Development Fund, the project ELITAS CZ.02.1.01/0.0/0.0/16 013/0001793the National Programme of ‘Sustainability Ⅱ’ and ELI phase 2 CZ.02.1.01/0.0/0.0/15008/0000162The PETAL project was designed and built by the CEA under the financial auspices of the Region Nouvelle Aquitaine, the French Government and the European Unionsupported by EPSRC grants EP/K022415/1 and EP/R006202supported by the European Cluster of Advanced Laser Light Sources, EUCALL, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654220funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654148 Laserlab-Europethe use of the EPOCH PIC code (developed under EPSRC grant EP/G054940/1).
文摘This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.