The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both hav...The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O_(2) to water(H_2O) or from O_(2) to hydrogen peroxide(H_2O_(2)). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments(e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges.展开更多
Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyze...Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.展开更多
The sluggish four-electron transfer of the oxygen evolution reaction(OER)limits the performance of water electrolyzers.Hence,OER electrocatalysts based on earth-abundant elements are urgently needed.Heteroatom doping ...The sluggish four-electron transfer of the oxygen evolution reaction(OER)limits the performance of water electrolyzers.Hence,OER electrocatalysts based on earth-abundant elements are urgently needed.Heteroatom doping has been an efficient approach to boost the intrinsic OER activity of the active sites by modifying the electronic structure.Here,a simple anion substitution strategy is reported that increases the OER activity of nickel selenides via a one-step hydrothermal treatment of a metal–organic framework precursor.The resulting S-substituted Ni_(3)Se_(4) nanoparticles display distortion of their crystal lattice.As expected,the sulfur substitution modifies the electronic structure of Ni_(3)Se_(4) and leads to outstanding electrocatalytic activity.All the S-substituted Ni_(3)Se_(4) catalysts exhibit higher OER activities than the original Ni_(3)Se_(4).The optimized catalyst achieves a current density of 10 mA cm^(−2) at an overpotential of 275 mV with a Tafel slope of 64 mV dec^(−1) in 1.0 M KOH.In addition to its electrochemical activity,the S-Ni_(3)Se_(4)-2 catalyst also exhibits good stability with only a 7.5%increase in overpotential at 50 mA cm^(−2) after 100 hours.This work demonstrates one strategy to modify the electronic structure of transition metal compounds by anion regulation.展开更多
Previous work illustrated that glucose oxidase (GOx) could be deposited on conducting substrates using asymmetrical alternating current electrophoretic deposition (AC-EPD) to form thick enzyme layers suitable for the ...Previous work illustrated that glucose oxidase (GOx) could be deposited on conducting substrates using asymmetrical alternating current electrophoretic deposition (AC-EPD) to form thick enzyme layers suitable for the manufacturing of highly active biosensors. Here, we modeled the amperometric response of GOx layers to glucose as a function of the thickness of the enzyme layer. The model is based on reaction-diffusion equations with irreversible first-order catalytic reactions. The numerical results displayed qualitative and reasonable quantitative agreement with the experimental data obtained for oxidation currents due to glucose, which increase with the enzyme thickness.展开更多
High sulphur loading and lean electrolyte conditions are important to achieve the high theoretical energy density of lithiumsulphur(Li-S)batteries.However,serious problems such as low sulphur utilization and fast capa...High sulphur loading and lean electrolyte conditions are important to achieve the high theoretical energy density of lithiumsulphur(Li-S)batteries.However,serious problems such as low sulphur utilization and fast capacity fade are typically experienced under low electrolyte/sulphur(E/S)ratios and high sulphur loading conditions.To address these issues,a cobaltcontaining three-dimensional conductive honeycomb(Co@N-HPC)is proposed in this work as a material for sulphur cathodes.The good electrical conductivity and high density of catalytic sites of(Co@N-HPC)allow fast redox kinetics of lithium polysulfide(LiPS)in high-sulphur-loading electrodes.In addition,the hierarchical structure and good wettability by the electrolyte of Co@NHPC facilitates electrolyte penetration and LiPS conversion,leading to a high utilization of sulphur under lean electrolyte conditions.Therefore,at a current density of 0.2 C,a volumetric capacity of 1,410 mAh·cm^(−3)was attained with a sulphur loading of 5.1 mg·cm^(−2)and an E/S ratio of 5μL·mg^(−1).This work provides ideas for the development of lean electrolyte Li-S batteries with a high sulphur loading.展开更多
1.Introduction.Hydrogen is considered as a viable alternative to fossil fuels[1,2].Large-scale hydrogen production by electrochemical water splitting is regarded as an important approach.It consists of two half-reacti...1.Introduction.Hydrogen is considered as a viable alternative to fossil fuels[1,2].Large-scale hydrogen production by electrochemical water splitting is regarded as an important approach.It consists of two half-reactions:hydrogen evolution reaction(HER)at the cathode and oxygen evolution reaction(OER)at the anode[3].Compared to the HER,the OER has sluggish kinetic and large overpotentials,re-sulting from the complex oxidation pathway[4,5].Although RuO_(2) and IrO_(2) have excellent catalytic OER performance[6],their large-scale deployment is unfeasible due to the scarcity and high cost of these noble metal elements.Thus,cheap OER electrocatalysts have been actively investigated[7].展开更多
Although the oxygen reduction process to hydrogen peroxide(H_(2)O_(2))is a green option for H_(2)O_(2)generation,the low activity and selectivity hindered the industry's process.In recent years,the electrochemical...Although the oxygen reduction process to hydrogen peroxide(H_(2)O_(2))is a green option for H_(2)O_(2)generation,the low activity and selectivity hindered the industry's process.In recent years,the electrochemical synthesis of H_(2)O_(2)through a 2e-transfer method of oxygen reduction reaction(ORR)has piqued the interest of both academics and industry.Metal oxide catalysts have emerged as a novel family of electrochemical catalysts due to their unusual physical,chemical,and electrical characteristics.In this work,we first developed a Ruddlesden-Popper perovskite oxide(Pr_(2)NiO_(4+δ))as a highly selective and active catalyst for 2e-ORR to produce H_(2)O_(2).Molybdenum was introduced here to adjust the oxidation states of these transition metals with successful substitution into Ni-site to prepare Pr_(2)Ni1-xMoxO_(4+δ),and the molybdenum substitution improves the H_(2)O_(2)selectivity during the ORR process,in 0.1 M KOH,from 60%of Pr_(2)NiO_(4+δ)to 79%of Pr_(2)Ni_(0.8)Mo_(0.2)O_(4+δ)at 0.55 V versus RHE.A limiting H_(2)O_(2)concentration of_0.24 mM for Pr_(2)NiO_(4+δ)and 0.42 mM for Pr_(2)Ni_(0.8)Mo_(0.2)O_(4+δ)was obtained at a constant current of 10 mA/cm2 using a flow-cell reactor using a gas-diffusion electrode.展开更多
基金the Natural Science Foundation of China (22005250)National Key R D Program of China (2022YFB2502000)FWO (12ZV320N)。
文摘The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O_(2) to water(H_2O) or from O_(2) to hydrogen peroxide(H_2O_(2)). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments(e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges.
基金the Research Foundation-Flanders (FWO) for a Research Project (G0B3218N)the financial support by the National Natural Science Foundation of China (22005054)+3 种基金Natural Science Foundation of Fujian Province (2021J01149)State Key Laboratory of Structural Chemistry (20200007)Sichuan Science and Technology Program (project No.: 2022ZYD0016 and 2023JDRC0013)the National Natural Science Foundation of China (project No. 21776120)。
文摘Lithium–sulfur(Li–S) batteries have received widespread attention, and lean electrolyte Li–S batteries have attracted additional interest because of their higher energy densities. This review systematically analyzes the effect of the electrolyte-to-sulfur(E/S) ratios on battery energy density and the challenges for sulfur reduction reactions(SRR) under lean electrolyte conditions. Accordingly, we review the use of various polar transition metal sulfur hosts as corresponding solutions to facilitate SRR kinetics at low E/S ratios(< 10 μL mg~(-1)), and the strengths and limitations of different transition metal compounds are presented and discussed from a fundamental perspective. Subsequently, three promising strategies for sulfur hosts that act as anchors and catalysts are proposed to boost lean electrolyte Li–S battery performance. Finally, an outlook is provided to guide future research on high energy density Li–S batteries.
基金Funding from the National Natural Science Foundation of China(21776120)the Natural Science Foundation of Fujian Province,China(2018 J01433)is acknowledged.K.Wan is grateful to the Oversea Study Program of Guangzhou Elite Project.X.Zhang is grateful for the Research Foundation-Flanders(FWO)project(12ZV320N).J.Luo acknowledges the FWO research project(G0B3218N).
文摘The sluggish four-electron transfer of the oxygen evolution reaction(OER)limits the performance of water electrolyzers.Hence,OER electrocatalysts based on earth-abundant elements are urgently needed.Heteroatom doping has been an efficient approach to boost the intrinsic OER activity of the active sites by modifying the electronic structure.Here,a simple anion substitution strategy is reported that increases the OER activity of nickel selenides via a one-step hydrothermal treatment of a metal–organic framework precursor.The resulting S-substituted Ni_(3)Se_(4) nanoparticles display distortion of their crystal lattice.As expected,the sulfur substitution modifies the electronic structure of Ni_(3)Se_(4) and leads to outstanding electrocatalytic activity.All the S-substituted Ni_(3)Se_(4) catalysts exhibit higher OER activities than the original Ni_(3)Se_(4).The optimized catalyst achieves a current density of 10 mA cm^(−2) at an overpotential of 275 mV with a Tafel slope of 64 mV dec^(−1) in 1.0 M KOH.In addition to its electrochemical activity,the S-Ni_(3)Se_(4)-2 catalyst also exhibits good stability with only a 7.5%increase in overpotential at 50 mA cm^(−2) after 100 hours.This work demonstrates one strategy to modify the electronic structure of transition metal compounds by anion regulation.
文摘Previous work illustrated that glucose oxidase (GOx) could be deposited on conducting substrates using asymmetrical alternating current electrophoretic deposition (AC-EPD) to form thick enzyme layers suitable for the manufacturing of highly active biosensors. Here, we modeled the amperometric response of GOx layers to glucose as a function of the thickness of the enzyme layer. The model is based on reaction-diffusion equations with irreversible first-order catalytic reactions. The numerical results displayed qualitative and reasonable quantitative agreement with the experimental data obtained for oxidation currents due to glucose, which increase with the enzyme thickness.
基金M.W.and J.S.L.acknowledge the Research Foundation-Flanders(FWO)for a Research Project(No.G0B3218N)and a Research Grant(No.1529816N)J.S.L.,Z.B.C.,and M.W.acknowledge the financial support by the National Natural Science Foundation of China(Nos.21776120 and 22005054)H.P.is grateful to the China Scholarship Council.Funding from State Key Laboratory of Structural Chemistry,and the Natural Science Foundation of Fujian Province(No.2021J01149)is also acknowledged.
文摘High sulphur loading and lean electrolyte conditions are important to achieve the high theoretical energy density of lithiumsulphur(Li-S)batteries.However,serious problems such as low sulphur utilization and fast capacity fade are typically experienced under low electrolyte/sulphur(E/S)ratios and high sulphur loading conditions.To address these issues,a cobaltcontaining three-dimensional conductive honeycomb(Co@N-HPC)is proposed in this work as a material for sulphur cathodes.The good electrical conductivity and high density of catalytic sites of(Co@N-HPC)allow fast redox kinetics of lithium polysulfide(LiPS)in high-sulphur-loading electrodes.In addition,the hierarchical structure and good wettability by the electrolyte of Co@NHPC facilitates electrolyte penetration and LiPS conversion,leading to a high utilization of sulphur under lean electrolyte conditions.Therefore,at a current density of 0.2 C,a volumetric capacity of 1,410 mAh·cm^(−3)was attained with a sulphur loading of 5.1 mg·cm^(−2)and an E/S ratio of 5μL·mg^(−1).This work provides ideas for the development of lean electrolyte Li-S batteries with a high sulphur loading.
基金the Sichuan Science and Technology Program(project Nos.2022ZYD0016 and 2023JDRC0013)the National Natural Science Foundation of China(project No.21776120)+2 种基金Xuan Zhang and Jan Fransaer are grateful for the Research Foundation–Flanders(FWO)project(No.12ZV320N)Xuan Zhang is grateful to the National Natural Science Foundation of China(No.22005250)Wei Zhang,Wei Guo,Sijie Xie,and Zhenhong Xue are grateful to the China Scholarship Council(CSC).
文摘1.Introduction.Hydrogen is considered as a viable alternative to fossil fuels[1,2].Large-scale hydrogen production by electrochemical water splitting is regarded as an important approach.It consists of two half-reactions:hydrogen evolution reaction(HER)at the cathode and oxygen evolution reaction(OER)at the anode[3].Compared to the HER,the OER has sluggish kinetic and large overpotentials,re-sulting from the complex oxidation pathway[4,5].Although RuO_(2) and IrO_(2) have excellent catalytic OER performance[6],their large-scale deployment is unfeasible due to the scarcity and high cost of these noble metal elements.Thus,cheap OER electrocatalysts have been actively investigated[7].
基金The authors are grateful for the FWO(12ZV320N)and NNSF(22005250).O.M.M.thanks CONACYT-Mexico.K.W.is grateful to Guangzhou Elite Project.W.Z.,W.G,S.X.,and Q.L.are grateful to CSC.
文摘Although the oxygen reduction process to hydrogen peroxide(H_(2)O_(2))is a green option for H_(2)O_(2)generation,the low activity and selectivity hindered the industry's process.In recent years,the electrochemical synthesis of H_(2)O_(2)through a 2e-transfer method of oxygen reduction reaction(ORR)has piqued the interest of both academics and industry.Metal oxide catalysts have emerged as a novel family of electrochemical catalysts due to their unusual physical,chemical,and electrical characteristics.In this work,we first developed a Ruddlesden-Popper perovskite oxide(Pr_(2)NiO_(4+δ))as a highly selective and active catalyst for 2e-ORR to produce H_(2)O_(2).Molybdenum was introduced here to adjust the oxidation states of these transition metals with successful substitution into Ni-site to prepare Pr_(2)Ni1-xMoxO_(4+δ),and the molybdenum substitution improves the H_(2)O_(2)selectivity during the ORR process,in 0.1 M KOH,from 60%of Pr_(2)NiO_(4+δ)to 79%of Pr_(2)Ni_(0.8)Mo_(0.2)O_(4+δ)at 0.55 V versus RHE.A limiting H_(2)O_(2)concentration of_0.24 mM for Pr_(2)NiO_(4+δ)and 0.42 mM for Pr_(2)Ni_(0.8)Mo_(0.2)O_(4+δ)was obtained at a constant current of 10 mA/cm2 using a flow-cell reactor using a gas-diffusion electrode.