Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic simila...Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.展开更多
Accesses Per Cycle(APC),Concurrent Average Memory Access Time(C-AMAT),and Layered Performance Matching(LPM)are three memory performance models that consider both data locality and memory assess concurrency.The APC mod...Accesses Per Cycle(APC),Concurrent Average Memory Access Time(C-AMAT),and Layered Performance Matching(LPM)are three memory performance models that consider both data locality and memory assess concurrency.The APC model measures the throughput of a memory architecture and therefore reflects the quality of service(QoS)of a memory system.The C-AMAT model provides a recursive expression for the memory access delay and therefore can be used for identifying the potential bottlenecks in a memory hierarchy.The LPM method transforms a global memory system optimization into localized optimizations at each memory layer by matching the data access demands of the applications with the underlying memory system design.These three models have been proposed separately through prior efforts.This paper reexamines the three models under one coherent mathematical framework.More specifically,we present a new memorycentric view of data accesses.We divide the memory cycles at each memory layer into four distinct categories and use them to recursively define the memory access latency and concurrency along the memory hierarchy.This new perspective offers new insights with a clear formulation of the memory performance considering both locality and concurrency.Consequently,the performance model can be easily understood and applied in engineering practices.As such,the memory-centric approach helps establish a unified mathematical foundation for model-driven performance analysis and optimization of contemporary and future memory systems.展开更多
基金supported by NIH R01 DE14190 and R21 DE22625 (HX)National Science Foundation of China 31100695 and 31328008 (LZ), 81401794 (PW)Maryland Stem Cell Research Fund and University of Maryland School of Dentistry
文摘Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CAP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/ morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.
基金supported in part by the U.S.National Science Foundation under Grant Nos.CCF-2008000,CNS-1730488,and CCF-2008907the U.S.Department of Homeland Security under Grant No.2017-ST-062-000002.
文摘Accesses Per Cycle(APC),Concurrent Average Memory Access Time(C-AMAT),and Layered Performance Matching(LPM)are three memory performance models that consider both data locality and memory assess concurrency.The APC model measures the throughput of a memory architecture and therefore reflects the quality of service(QoS)of a memory system.The C-AMAT model provides a recursive expression for the memory access delay and therefore can be used for identifying the potential bottlenecks in a memory hierarchy.The LPM method transforms a global memory system optimization into localized optimizations at each memory layer by matching the data access demands of the applications with the underlying memory system design.These three models have been proposed separately through prior efforts.This paper reexamines the three models under one coherent mathematical framework.More specifically,we present a new memorycentric view of data accesses.We divide the memory cycles at each memory layer into four distinct categories and use them to recursively define the memory access latency and concurrency along the memory hierarchy.This new perspective offers new insights with a clear formulation of the memory performance considering both locality and concurrency.Consequently,the performance model can be easily understood and applied in engineering practices.As such,the memory-centric approach helps establish a unified mathematical foundation for model-driven performance analysis and optimization of contemporary and future memory systems.