The effect of arbuscular mycorrhizal fungi on seedling growth across the rain forest-pasture edge has not received much attention. In a tropical rain forest in eastern Mexico, the seedlings of light demanding (Ficus i...The effect of arbuscular mycorrhizal fungi on seedling growth across the rain forest-pasture edge has not received much attention. In a tropical rain forest in eastern Mexico, the seedlings of light demanding (Ficus insipida), nonsecondary light demanding (Lonchocarpus cruentus) and shade tolerant species (Nectandra ambigens, Coccoloba hondurensis) were grown and transplanted to a forest edge with three inoculation treatments (AM fungus spores and colonized roots, spores, and no inoculum). For all species, stem height, stem diameter, total dry weight, leaf area and net assimilation rate were higher in the pasture. Stem height, stem diameter and root/shoot were higher for L. cruentus, and leaf area ratio, specific leaf area and net assimilation rate were higher for F. insipida;the lowest values of almost all variables were recorded for N. ambigens. L. cruentus and C. hondurensis with mycorrhizae had the highest values for root/shoot and net assimilation rate, respectively. The lowest values of root/shoot and net assimilation rate were observed for nonlight-demanding species in the forest. There were clear trade-offs for the pioneer species between survival and growth, and in underground biomass allocation and assimilation for nonsecondary light demanding, but there was not for the shade-tolerant species.展开更多
基金the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica(PAPIIT)of the Universidad Nacional Autónoma de México(UNAM Grant IN-235402)the Secretaría de Medio Ambiente y Recursos Naturales-Consejo Nacional de Ciencia y Tecnología(Grant 2002-c01-668),and the Packard Foundation.
文摘The effect of arbuscular mycorrhizal fungi on seedling growth across the rain forest-pasture edge has not received much attention. In a tropical rain forest in eastern Mexico, the seedlings of light demanding (Ficus insipida), nonsecondary light demanding (Lonchocarpus cruentus) and shade tolerant species (Nectandra ambigens, Coccoloba hondurensis) were grown and transplanted to a forest edge with three inoculation treatments (AM fungus spores and colonized roots, spores, and no inoculum). For all species, stem height, stem diameter, total dry weight, leaf area and net assimilation rate were higher in the pasture. Stem height, stem diameter and root/shoot were higher for L. cruentus, and leaf area ratio, specific leaf area and net assimilation rate were higher for F. insipida;the lowest values of almost all variables were recorded for N. ambigens. L. cruentus and C. hondurensis with mycorrhizae had the highest values for root/shoot and net assimilation rate, respectively. The lowest values of root/shoot and net assimilation rate were observed for nonlight-demanding species in the forest. There were clear trade-offs for the pioneer species between survival and growth, and in underground biomass allocation and assimilation for nonsecondary light demanding, but there was not for the shade-tolerant species.