The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre me...The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.展开更多
Safflower is a Mediterranean-subtropical oil crop, with temperate climate. To assess the suitability of safflower may have certain production potential in organic farming in regions cultivation under temperate climate...Safflower is a Mediterranean-subtropical oil crop, with temperate climate. To assess the suitability of safflower may have certain production potential in organic farming in regions cultivation under temperate climate in low input organic farming, ten cultivars were grown in two years experiment in Lindhoft-Kiel in Northern Germany in clay/sand soil. Pearson correlations reveal that oil yield exhibited tight positive correlations with plant height, plant dry matter, capitula plant-1, achenes capitulum-1 and thousand achene mass (TAM), but was not correlated with days to full flowering or oil concentration. Yield component analysis reveals that achenes capitulum1 had the major influence on the variation of oil yield of all studied cultivars, followed by capitula plant1 and TAM, while the oil concentration had slightly negative influence, and the plant density was negatively associated with oil yield. Although two years field experiment is not enough to analyse the performance of safflower adaptability to certain region, it can be concluded that the most adaptive cultivars are PI-209286 originated from Romania, and cultivar CART-19/89 originated from Poland, while the less adaptive cultivars were DO-13/03 and DO-15/03 with German origin in addition to the Canadian cultivar PI-572475/Saffire. The most striking yield component that contributes to the high yield is achene capitulumt, which can be used as a base for selecting cultivars adaptive to humid cold conditions. The growth period between full flowering and harvest influencing this yield component must be given attention to avoid low temperature and rainfall by tuning sowing date to improve yield at these conditions.展开更多
Safflower represents an important oil crop internationally and may have a production potential under low input conditions, but its putatively high phosphorous use efficiency is not sustained. This study aims to direct...Safflower represents an important oil crop internationally and may have a production potential under low input conditions, but its putatively high phosphorous use efficiency is not sustained. This study aims to directly compare safflower with sunflower in terms of phosphorus use efficiency in nutrient solution under controlled conditions. Growth of both species responded strongly to increasing P supply. Safflower recovers less proportion of added P than sunflower. External P requirement ((g P supply (100 g dry matter (DM) produced)~) was higher in safflower than sunflower. The efficiency of the crops for DM production based on accumulated P (mg P potl, efficiency ratio), and P concentration in DM ((mg P (g DM)'I), utilization index) were interpreted using Michaelis-Menten kinetics as growth response curves. Accordingly, Km constant was lower in sunflower compared to safflower in terms of utilization index, but both were similar in terms of efficiency ratio. High Km constant in safflower in terms of utilization index indicates the high P concentration in tissues to produce 50% of potential maximum DM, consequently less efficient crop. Utilization efficiency contributed more than uptake efficiency in overall PUE in the efficient cultivar and could be the cause of its superiority in PUE. It can be concluded that safflower has a high requirement for P with respect to growth, sunflower is more efficient in terms of uptake and utilization of P at optimal and sub-optimal P supplies indicating that safflower can not be considered a low nutrient input crop compared to sunflower with respect to phosphorus.展开更多
The effect of packaging materials and lighting conditions on quality of extra virgin olive oil (EVOO) was investigated during six months. The results highlighted an influence of light and type of packaging material ...The effect of packaging materials and lighting conditions on quality of extra virgin olive oil (EVOO) was investigated during six months. The results highlighted an influence of light and type of packaging material on EVOO-quality with storage time. At shelf, all packages maintained EVOO at the end of storage in terms of acidity, peroxide value, K232, while K270 exceeded limit of EVOO in glass and PET-stored oil. Loss of phenols was the highest in glass-stored oil and the lowest in high-density polyethylene (HDPE)-stored oil. In terms of sensory evaluation, glass-stored oil lost EVOO grade after three months and its edible compliance after six months, while HDPE-stored oil maintained EVOO grade 90 days and was virgin after six months. In extended lighting, acidity, peroxide value and K232 did not exceed EVOO grade, while K270 exceeded EVOO grade after 30 days in glass and polyethylene terephthalate (PET)-stored oil and after 90 days in HDPE. The loss of phenols was the largest in glass and smallest in HDPE-stored oil. Glass stored-oil lost organoleptic edible compliance before 90 days, while that in PET was virgin at 90 days and that in HDPE maintained EVOO quality 90 days. At the end of experiment, oils in all packages were not edible. In dark, all packages maintained oil in EVOO quality in terms of all indices. The loss of phenols was marginal but was the least in glass and the highest in HDPE. It was concluded that HDPE bottles conserve stored olive oil at shelf or illumination better than PET or glass, while in dark, glass was superior over plastic.展开更多
文摘The efficiency of advanced membranes towards removal of general and specific microbes from wastewater was investigated. The treatment included a subsequent system of activated sludge, ultrafiltration (hollow fibre membranes with 100 kDa cut-off, and spiral wound membranes with 20 kDa cut-off), and RO (reverse osmosis). The removal evaluation of screened microbes present in treated wastewater showed that hollow fibre membrane rejected only 1 log (90% rejection) of the TPC (total microbial count), TC (total coliforms), and FC (faecal coliforms). A higher effectiveness was observed with spiral wound, removing 2-3 logs (99%-99.9%) of TPC and complete rejection of TC and FC. The RO system was successful in total rejection of all received bacteria. The removal evaluation of inoculated specific types of bacteria showed that the hollow membranes removed 2 logs (99%) of inoculated E. coli (10^7-10^8 cfu/mL inoculum), 2-3 logs (99%-99.9%) of Enterococus spp. (10^7-10^10 cfu/mL inoculum), 1-2 logs (90%-99%) of Salmonella (10^8-10^10 cfu/mL inoculum) and 1-2 logs (90%-99%) of Shigella (10^5-10^6 cfu/mL inoculum). The spiral wound was significantly efficient in rejecting further 3 logs of E. coil, 5 logs of Enterococus spp., 4 logs of Salmonella, and a complete rejection of all received bacteria was accomplished by RO membrane. The results indicate that Gram positive bacteria were removed much more efficiently compared to the Gram negative ones, the rationale behind such behaviour is based on cell walls elasticity.
文摘Safflower is a Mediterranean-subtropical oil crop, with temperate climate. To assess the suitability of safflower may have certain production potential in organic farming in regions cultivation under temperate climate in low input organic farming, ten cultivars were grown in two years experiment in Lindhoft-Kiel in Northern Germany in clay/sand soil. Pearson correlations reveal that oil yield exhibited tight positive correlations with plant height, plant dry matter, capitula plant-1, achenes capitulum-1 and thousand achene mass (TAM), but was not correlated with days to full flowering or oil concentration. Yield component analysis reveals that achenes capitulum1 had the major influence on the variation of oil yield of all studied cultivars, followed by capitula plant1 and TAM, while the oil concentration had slightly negative influence, and the plant density was negatively associated with oil yield. Although two years field experiment is not enough to analyse the performance of safflower adaptability to certain region, it can be concluded that the most adaptive cultivars are PI-209286 originated from Romania, and cultivar CART-19/89 originated from Poland, while the less adaptive cultivars were DO-13/03 and DO-15/03 with German origin in addition to the Canadian cultivar PI-572475/Saffire. The most striking yield component that contributes to the high yield is achene capitulumt, which can be used as a base for selecting cultivars adaptive to humid cold conditions. The growth period between full flowering and harvest influencing this yield component must be given attention to avoid low temperature and rainfall by tuning sowing date to improve yield at these conditions.
文摘Safflower represents an important oil crop internationally and may have a production potential under low input conditions, but its putatively high phosphorous use efficiency is not sustained. This study aims to directly compare safflower with sunflower in terms of phosphorus use efficiency in nutrient solution under controlled conditions. Growth of both species responded strongly to increasing P supply. Safflower recovers less proportion of added P than sunflower. External P requirement ((g P supply (100 g dry matter (DM) produced)~) was higher in safflower than sunflower. The efficiency of the crops for DM production based on accumulated P (mg P potl, efficiency ratio), and P concentration in DM ((mg P (g DM)'I), utilization index) were interpreted using Michaelis-Menten kinetics as growth response curves. Accordingly, Km constant was lower in sunflower compared to safflower in terms of utilization index, but both were similar in terms of efficiency ratio. High Km constant in safflower in terms of utilization index indicates the high P concentration in tissues to produce 50% of potential maximum DM, consequently less efficient crop. Utilization efficiency contributed more than uptake efficiency in overall PUE in the efficient cultivar and could be the cause of its superiority in PUE. It can be concluded that safflower has a high requirement for P with respect to growth, sunflower is more efficient in terms of uptake and utilization of P at optimal and sub-optimal P supplies indicating that safflower can not be considered a low nutrient input crop compared to sunflower with respect to phosphorus.
文摘The effect of packaging materials and lighting conditions on quality of extra virgin olive oil (EVOO) was investigated during six months. The results highlighted an influence of light and type of packaging material on EVOO-quality with storage time. At shelf, all packages maintained EVOO at the end of storage in terms of acidity, peroxide value, K232, while K270 exceeded limit of EVOO in glass and PET-stored oil. Loss of phenols was the highest in glass-stored oil and the lowest in high-density polyethylene (HDPE)-stored oil. In terms of sensory evaluation, glass-stored oil lost EVOO grade after three months and its edible compliance after six months, while HDPE-stored oil maintained EVOO grade 90 days and was virgin after six months. In extended lighting, acidity, peroxide value and K232 did not exceed EVOO grade, while K270 exceeded EVOO grade after 30 days in glass and polyethylene terephthalate (PET)-stored oil and after 90 days in HDPE. The loss of phenols was the largest in glass and smallest in HDPE-stored oil. Glass stored-oil lost organoleptic edible compliance before 90 days, while that in PET was virgin at 90 days and that in HDPE maintained EVOO quality 90 days. At the end of experiment, oils in all packages were not edible. In dark, all packages maintained oil in EVOO quality in terms of all indices. The loss of phenols was marginal but was the least in glass and the highest in HDPE. It was concluded that HDPE bottles conserve stored olive oil at shelf or illumination better than PET or glass, while in dark, glass was superior over plastic.