Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef...Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.展开更多
Organic electrolyte-gated transistors(OEGTs) have the benefits of low power consumption and large current modulation.Nevertheless,the electrical performance of n-type OEGTs lags far behind that of p-type OEGTs.In this...Organic electrolyte-gated transistors(OEGTs) have the benefits of low power consumption and large current modulation.Nevertheless,the electrical performance of n-type OEGTs lags far behind that of p-type OEGTs.In this study,we design a series of polymers,P(NDITEG-T) and P(NDIMTEG-T),comprising a naphthalene diimide backbone for n-type charge transport and oligo(ethylene glycol)(OEG) side chains for high ionic conductivity and eco-friendly solution processing.The incorporation of the OEG chain facilitates the electrochemical doping of the semiconductor by ions to realize high-performance,n-type OEGTs.Notably,in OEGTs,P(NDITEG-T) achieves a high electron mobility of 1.0 × 10^(-1) cm^(2) V^(-1) s^(-1),which represents the highest value reported for solution-processed,n-type OEGTs.It is noted that the fabrication of the OEGTs is achieved by solution processing with eco-friendly ethanol/water mixtures in virtue of the hydrophilic OEG chains.This work demonstrates the molecular design of the P(NDITEG-T) polymer and its significant ability to produce aqueous-processable,high-performance,and n-type OEGTs.展开更多
基金supported by National R&D Program through the NRF funded by Ministry of Science and ICT(2021M3D1A2049315)and the Technology Innovation Program(20021909,Development of H2 gas detection films(?0.1%)and process technologies)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Basic Science Program through the NRF of Korea,funded by the Ministry of Science and ICT,Korea.(Project Number:NRF-2022R1C1C1008845)supported by Basic Science Research Program through the NRF funded by the Ministry of Education(Project Number:NRF-2022R1A6A3A13073158)。
文摘Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.
基金supported by the Materials & Components Technology Development Program (20006537, Development of High Performance Insulation Materials for Flexible OLED Display TFT)the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea)+1 种基金the grant from the Ministry of SMEs and Startups of the Korean Government (1425144083)the support by National Research Foundation of Korea (NRF) Grant of the Korean Government (2017M3A7B8065584)。
文摘Organic electrolyte-gated transistors(OEGTs) have the benefits of low power consumption and large current modulation.Nevertheless,the electrical performance of n-type OEGTs lags far behind that of p-type OEGTs.In this study,we design a series of polymers,P(NDITEG-T) and P(NDIMTEG-T),comprising a naphthalene diimide backbone for n-type charge transport and oligo(ethylene glycol)(OEG) side chains for high ionic conductivity and eco-friendly solution processing.The incorporation of the OEG chain facilitates the electrochemical doping of the semiconductor by ions to realize high-performance,n-type OEGTs.Notably,in OEGTs,P(NDITEG-T) achieves a high electron mobility of 1.0 × 10^(-1) cm^(2) V^(-1) s^(-1),which represents the highest value reported for solution-processed,n-type OEGTs.It is noted that the fabrication of the OEGTs is achieved by solution processing with eco-friendly ethanol/water mixtures in virtue of the hydrophilic OEG chains.This work demonstrates the molecular design of the P(NDITEG-T) polymer and its significant ability to produce aqueous-processable,high-performance,and n-type OEGTs.