In this paper we modify previous models to develop a new model of within-host dengue infection without the assumption that monocyte production is constant. We show that this new model exhibits behavior not seen in pre...In this paper we modify previous models to develop a new model of within-host dengue infection without the assumption that monocyte production is constant. We show that this new model exhibits behavior not seen in previous models. We then proceed by obtaining an expression for the net reproductive rate of the virus and thus establish a stability result. We also perform a sensitivity analysis to test various treatment strategies and find that two strategies might be fruitful. One is the reduction of the infection rate of monocytes by viruses and the other, more effective, theoretical approach is to reduce the number of new viruses per infected monocyte.展开更多
We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential...We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential equations and a nonlinear first-order ordinary differential equation. The scheme is analyzed and used to provide an existence-uniqueness result. Numerical simulations are performed in order to demonstrate the first-order rate of convergence. A sensitivity analysis was done in order to compare the effects of two drug types, those that increase the death rate of HPV-infected cells, and those that increase the death rate of the precancerous cell population. The model predicts that treatments that affect the precancerous cell population by directly increasing the corresponding death rate are far more effective than those that increase the death rate of HPV-infected cells.展开更多
文摘In this paper we modify previous models to develop a new model of within-host dengue infection without the assumption that monocyte production is constant. We show that this new model exhibits behavior not seen in previous models. We then proceed by obtaining an expression for the net reproductive rate of the virus and thus establish a stability result. We also perform a sensitivity analysis to test various treatment strategies and find that two strategies might be fruitful. One is the reduction of the infection rate of monocytes by viruses and the other, more effective, theoretical approach is to reduce the number of new viruses per infected monocyte.
文摘We present a first-order finite difference scheme for approximating solutions of a mathematical model of cervical cancer induced by the human papillomavirus (HPV), which consists of four nonlinear partial differential equations and a nonlinear first-order ordinary differential equation. The scheme is analyzed and used to provide an existence-uniqueness result. Numerical simulations are performed in order to demonstrate the first-order rate of convergence. A sensitivity analysis was done in order to compare the effects of two drug types, those that increase the death rate of HPV-infected cells, and those that increase the death rate of the precancerous cell population. The model predicts that treatments that affect the precancerous cell population by directly increasing the corresponding death rate are far more effective than those that increase the death rate of HPV-infected cells.