The purpose of this paper is to present a general universal formula for <span style="font-family:Verdana;"><i></i></span><i><span><span><i><span style="...The purpose of this paper is to present a general universal formula for <span style="font-family:Verdana;"><i></i></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate survival functions for arbitrary </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> = 2, 3, </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">...</span><span style="font-family:Verdana;">, given all the univariate marginal survival functions. This universal form of </span></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate probability distributions was obtained by means of “dependence functions” named “joiners” in the text. These joiners determine all the involved stochastic dependencies between the underlying random variables. However, in order that the presented formula (the form) represents a legitimate survival function, some necessary and sufficient conditions for the joiners had to be found. Basically, finding those conditions is the main task of this paper. This task was successfully performed for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 2 and the main results for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 3 were formulated as Theorem 1 and Theorem 2 in Section 4. Nevertheless, the hypothetical conditions valid for the general </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 case were also formulated in Section 3 as the (very convincing) Hypothesis. As for the sufficient conditions for both the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> = 3 and</span><i> </i></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 cases, the full generality was not achieved since two restrictions were imposed. Firstly, we limited ourselves to the, defined in the text, “continuous cases” (when the corresponding joint density exists and is continuous), and secondly we consider positive stochastic dependencies only. Nevertheless, the class of the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate distributions which can be constructed is very wide. The presented method of construction by means of joiners can be considered competitive to the </span><span style="font-family:Verdana;"><strong></strong></span></span></span><strong><span><span><b><span style="font-family:Verdana;">copula</span></b><span style="font-family:Verdana;"></span></span></span></strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> methodology. As it is suggested in the paper the possibility of building a common theory of both copulae and joiners is quite possible, and the joiners may play the role of tools within the theory of copulae, and vice versa copulae may, for example, be used for finding proper joiners. Another independent feature of the joiners methodology is the possibility of constructing many new stochastic processes including stationary and Markovian.</span></span></span>展开更多
Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The ...Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The actual aim, however, is an additional analysis of the physical and para-physical phenomena’ behavior as we formally transport observable mechanical phenomena [motion] to non-real interior of the complex domain. As it turns out, such procedure, when properly set, corresponds to transition from relativistic to more classic (or, possibly, just classic) kind of the motion. This procedure, we call the “Newtonization of relativistic physical quantities and phenomena”, first of all, includes the mechanical motion’s characteristics in the C3. The algebraic structure of vector spaces was imposed and analyzed on both: the set of all relativistic velocities and on the set of the corresponding to them “Galilean” velocities. The key point of the analysis is realization that, as a matter of fact, the relativistic theory and the classical are equivalent at least as for the kinematics. This conclusion follows the fact that the two defined structures of topological vector spaces i.e., the structure imposed on sets of all relativistic velocities and the structure on set of all “Galilean” velocities, are both diffeomorphic in their topological parts and are isomorphic as the vector spaces. As for the relativistic theory, the two approaches: the hyperbolic (“classical” SR) with its four-vector formalism and Euclidean, where SR is modeled by the complex para-space C3, were analyzed and compared.展开更多
A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<...A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.展开更多
Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict o...Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict ourselves to model positive stochastic dependences only with the general assumption that the underlying two marginal random variables are centered on the set of nonnegative real values. With only these assumptions we obtain nice general characterization of bivariate probability distributions that may play similar role as the copula methodology. Examples of reliability and biomedical applications are given.展开更多
We start with analyzing stochastic dependence in a classic bivariate normal density framework. We focus on the way the conditional density of one of the random variables depends on realizations of the other. In the bi...We start with analyzing stochastic dependence in a classic bivariate normal density framework. We focus on the way the conditional density of one of the random variables depends on realizations of the other. In the bivariate normal case this dependence takes the form of a parameter (here the “expected value”) of one probability density depending continuously (here linearly) on realizations of the other random variable. The point is, that such a pattern does not need to be restricted to that classical case of the bivariate normal. We show that this paradigm can be generalized and viewed in ways that allows one to extend it far beyond the bivariate or multivariate normal probability distributions class.展开更多
文摘The purpose of this paper is to present a general universal formula for <span style="font-family:Verdana;"><i></i></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate survival functions for arbitrary </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> = 2, 3, </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">...</span><span style="font-family:Verdana;">, given all the univariate marginal survival functions. This universal form of </span></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate probability distributions was obtained by means of “dependence functions” named “joiners” in the text. These joiners determine all the involved stochastic dependencies between the underlying random variables. However, in order that the presented formula (the form) represents a legitimate survival function, some necessary and sufficient conditions for the joiners had to be found. Basically, finding those conditions is the main task of this paper. This task was successfully performed for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 2 and the main results for the case </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> = 3 were formulated as Theorem 1 and Theorem 2 in Section 4. Nevertheless, the hypothetical conditions valid for the general </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 case were also formulated in Section 3 as the (very convincing) Hypothesis. As for the sufficient conditions for both the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> = 3 and</span><i> </i></span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;"> ≥ 4 cases, the full generality was not achieved since two restrictions were imposed. Firstly, we limited ourselves to the, defined in the text, “continuous cases” (when the corresponding joint density exists and is continuous), and secondly we consider positive stochastic dependencies only. Nevertheless, the class of the </span><span style="font-family:Verdana;"><i></i></span></span></span><i><span><span><i><span style="font-family:Verdana;">k</span></i><span style="font-family:Verdana;"></span></span></span></i><span><span><span style="font-family:Verdana;">-variate distributions which can be constructed is very wide. The presented method of construction by means of joiners can be considered competitive to the </span><span style="font-family:Verdana;"><strong></strong></span></span></span><strong><span><span><b><span style="font-family:Verdana;">copula</span></b><span style="font-family:Verdana;"></span></span></span></strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> methodology. As it is suggested in the paper the possibility of building a common theory of both copulae and joiners is quite possible, and the joiners may play the role of tools within the theory of copulae, and vice versa copulae may, for example, be used for finding proper joiners. Another independent feature of the joiners methodology is the possibility of constructing many new stochastic processes including stationary and Markovian.</span></span></span>
文摘Complex model, say C3, of “para-space” as alternative to the real M4 Minkowski space-time for both relativistic and classical mechanics was shortly introduced as reference to our previous works on that subject. The actual aim, however, is an additional analysis of the physical and para-physical phenomena’ behavior as we formally transport observable mechanical phenomena [motion] to non-real interior of the complex domain. As it turns out, such procedure, when properly set, corresponds to transition from relativistic to more classic (or, possibly, just classic) kind of the motion. This procedure, we call the “Newtonization of relativistic physical quantities and phenomena”, first of all, includes the mechanical motion’s characteristics in the C3. The algebraic structure of vector spaces was imposed and analyzed on both: the set of all relativistic velocities and on the set of the corresponding to them “Galilean” velocities. The key point of the analysis is realization that, as a matter of fact, the relativistic theory and the classical are equivalent at least as for the kinematics. This conclusion follows the fact that the two defined structures of topological vector spaces i.e., the structure imposed on sets of all relativistic velocities and the structure on set of all “Galilean” velocities, are both diffeomorphic in their topological parts and are isomorphic as the vector spaces. As for the relativistic theory, the two approaches: the hyperbolic (“classical” SR) with its four-vector formalism and Euclidean, where SR is modeled by the complex para-space C3, were analyzed and compared.
文摘A natural extension of the Lorentz transformation to its complex version was constructed together with a parallel extension of the Minkowski M<sup>4</sup> model for special relativity (SR) to complex C<sup>4</sup> space-time. As the [signed] absolute values of complex coordinates of the underlying motion’s characterization in C<sup>4</sup> one obtains a Newtonian-like type of motion whereas as the real parts of the complex motion’s description and of the complex Lorentz transformation, all the SR theory as modeled by M<sup>4</sup> real space-time can be recovered. This means all the SR theory is preserved in the real subspace M<sup>4</sup> of the space-time C<sup>4</sup> while becoming simpler and clearer in the new complex model’s framework. Since velocities in the complex model can be determined geometrically, with no primary use of time, time turns out to be definable within the equivalent theory of the reduced complex C<sup>4</sup> model to the C<sup>3</sup> “para-space” model. That procedure allows us to separate time from the (para)space and consider all the SR theory as a theory of C<sup>3</sup> alone. On the other hand, the complex time defined within the C<sup>3</sup> theory is interpreted and modeled by the single separate C<sup>1</sup> complex plane. The possibility for application of the C<sup>3</sup> model to quantum mechanics is suggested. As such, the model C<sup>3</sup> seems to have unifying abilities for application to different physical theories.
文摘Starting with the Aalen (1989) version of Cox (1972) 'regression model' we show the method for construction of "any" joint survival function given marginal survival functions. Basically, however, we restrict ourselves to model positive stochastic dependences only with the general assumption that the underlying two marginal random variables are centered on the set of nonnegative real values. With only these assumptions we obtain nice general characterization of bivariate probability distributions that may play similar role as the copula methodology. Examples of reliability and biomedical applications are given.
文摘We start with analyzing stochastic dependence in a classic bivariate normal density framework. We focus on the way the conditional density of one of the random variables depends on realizations of the other. In the bivariate normal case this dependence takes the form of a parameter (here the “expected value”) of one probability density depending continuously (here linearly) on realizations of the other random variable. The point is, that such a pattern does not need to be restricted to that classical case of the bivariate normal. We show that this paradigm can be generalized and viewed in ways that allows one to extend it far beyond the bivariate or multivariate normal probability distributions class.