In this study,more than 1500 particles of lightweight expanded clay aggregate(LECA)are individually loaded up to breakage,following different patterns of contact(from 2 to 7)using a purpose-built apparatus.Consequentl...In this study,more than 1500 particles of lightweight expanded clay aggregate(LECA)are individually loaded up to breakage,following different patterns of contact(from 2 to 7)using a purpose-built apparatus.Consequently,a statistical model for predicting the number of fragments into which a grain breaks as a function of the number of contacts and their diameter is proposed.The number of fragments is found to follow a statistical binomial-type distribution function that depends on the number of contacts.In addition,a model based on Bayesian networks,capable of assessing the number of fragments and their size(measured as normalized weight)as a function of the number of contacts,is implemented.The proposed method is applicable when performing discrete element method(DEM)simulations on granular media in which grain breakage plays a relevant role.展开更多
文摘In this study,more than 1500 particles of lightweight expanded clay aggregate(LECA)are individually loaded up to breakage,following different patterns of contact(from 2 to 7)using a purpose-built apparatus.Consequently,a statistical model for predicting the number of fragments into which a grain breaks as a function of the number of contacts and their diameter is proposed.The number of fragments is found to follow a statistical binomial-type distribution function that depends on the number of contacts.In addition,a model based on Bayesian networks,capable of assessing the number of fragments and their size(measured as normalized weight)as a function of the number of contacts,is implemented.The proposed method is applicable when performing discrete element method(DEM)simulations on granular media in which grain breakage plays a relevant role.