In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared...In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.展开更多
We report structural and electronic properties of Na_(2)Ni_(3)S_(4),a quasi-two-dimensional compound composed of alternating layers of[Ni_(3)S_(4)]^(2-)and Na^(+).The compound features a remarkable Ni-based kagome lat...We report structural and electronic properties of Na_(2)Ni_(3)S_(4),a quasi-two-dimensional compound composed of alternating layers of[Ni_(3)S_(4)]^(2-)and Na^(+).The compound features a remarkable Ni-based kagome lattice with a square planar configuration of four surrounding S atoms for each Ni atom.Magnetization and electrical measurements reveal a weak paramagnetic insulator with a gap of about 0.5 eV.Our band structure calculation highlights a set of topological flat bands of the kagome lattice derived from the rotated dxz-orbital with C_(3)+T symmetry in the presence of crystal-field splitting.展开更多
基金This work was supported by Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-M202300502,KJQN201800539).
文摘In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes.
基金supported by the National Natural Science Foundation of China(Grant Nos.12141002 and 12225401)the National Key Research and Development Program of China(Grant No.2021YFA1401902)+1 种基金the CAS Interdisciplinary Innovation Teamthe Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We report structural and electronic properties of Na_(2)Ni_(3)S_(4),a quasi-two-dimensional compound composed of alternating layers of[Ni_(3)S_(4)]^(2-)and Na^(+).The compound features a remarkable Ni-based kagome lattice with a square planar configuration of four surrounding S atoms for each Ni atom.Magnetization and electrical measurements reveal a weak paramagnetic insulator with a gap of about 0.5 eV.Our band structure calculation highlights a set of topological flat bands of the kagome lattice derived from the rotated dxz-orbital with C_(3)+T symmetry in the presence of crystal-field splitting.