Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods...Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2).展开更多
An accurate and effective neurological evaluation is indispensable in the treatment and rehabilitation of traumatic brain injury. However,most of the existing evaluation methods in basic research and clinical practice...An accurate and effective neurological evaluation is indispensable in the treatment and rehabilitation of traumatic brain injury. However,most of the existing evaluation methods in basic research and clinical practice are not objective or intuitive for assessing the neurological function of big animals, and are also difficult to use to qualify the extent of damage and recovery. In the present study, we established a big animal model of traumatic brain injury by impacting the cortical motor region of beagles. At 2 weeks after successful modeling, we detected neurological deficiencies in the animal model using a series of techniques, including three-dimensional motion capture, electromyogram and ground reaction force. These novel technologies may play an increasingly important role in the field of traumatic brain injury diagnosis and rehabilitation in the future. The experimental protocol was approved by the Animal Care and Use Committee of Logistics University of People's Armed Police Force(approval No. 2017-0006.2).展开更多
BACKGROUND Inadequate volume of future liver remnant(FLR)is a major challenge for hepatobiliary surgeons treating large or multiple liver tumors.As an alternative to associating liver partition and portal vein ligatio...BACKGROUND Inadequate volume of future liver remnant(FLR)is a major challenge for hepatobiliary surgeons treating large or multiple liver tumors.As an alternative to associating liver partition and portal vein ligation(ALPPS)for staged hepatectomy and liver venous deprivation(LVD)using stage 1 interventional radiology for vascular embolization combined with stage 2 open liver resection have been used.CASE SUMMARY A novel modified LVD technique was performed in a patient with pancreatic neuroendocrine tumor with liver metastases by using stage 1 laparoscopic ligation of the right hepatic vein,right posterior portal vein,and short hepatic veins combined with local excision of three liver metastases in the left hemiliver.The operation was followed three days later by interventional radiology to embolize an anomalous right anterior portal vein to complete LVD.A stage 2 laparoscopic right hemihepatectomy and pancreaticosplenectomy were then carried out.CONCLUSION The minimally invasive technique promoted a rapid increase,comparable to ALPPS,in volume of the FLR after the stage 1 operation to allow the laparoscopic stage 2 resection to be performed.展开更多
基金supported by the National Natural Science Foundation of China,No.11672332(to XYC)the National Key Research and Development Plan of China,No.2016YFC1101500(to SZ)
文摘Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2).
基金supported by the National Natural Science Foundation of China,No.11672332,11102235 and 31200809(all to XYC)the National Key Research and Development Plan of China,No.2016YFC1101500(to SZ)the Science and Technology Program of Tianjin,China,No.17YFZCSY00620 and 16ZXHLSY00120(both to XYC)
文摘An accurate and effective neurological evaluation is indispensable in the treatment and rehabilitation of traumatic brain injury. However,most of the existing evaluation methods in basic research and clinical practice are not objective or intuitive for assessing the neurological function of big animals, and are also difficult to use to qualify the extent of damage and recovery. In the present study, we established a big animal model of traumatic brain injury by impacting the cortical motor region of beagles. At 2 weeks after successful modeling, we detected neurological deficiencies in the animal model using a series of techniques, including three-dimensional motion capture, electromyogram and ground reaction force. These novel technologies may play an increasingly important role in the field of traumatic brain injury diagnosis and rehabilitation in the future. The experimental protocol was approved by the Animal Care and Use Committee of Logistics University of People's Armed Police Force(approval No. 2017-0006.2).
文摘BACKGROUND Inadequate volume of future liver remnant(FLR)is a major challenge for hepatobiliary surgeons treating large or multiple liver tumors.As an alternative to associating liver partition and portal vein ligation(ALPPS)for staged hepatectomy and liver venous deprivation(LVD)using stage 1 interventional radiology for vascular embolization combined with stage 2 open liver resection have been used.CASE SUMMARY A novel modified LVD technique was performed in a patient with pancreatic neuroendocrine tumor with liver metastases by using stage 1 laparoscopic ligation of the right hepatic vein,right posterior portal vein,and short hepatic veins combined with local excision of three liver metastases in the left hemiliver.The operation was followed three days later by interventional radiology to embolize an anomalous right anterior portal vein to complete LVD.A stage 2 laparoscopic right hemihepatectomy and pancreaticosplenectomy were then carried out.CONCLUSION The minimally invasive technique promoted a rapid increase,comparable to ALPPS,in volume of the FLR after the stage 1 operation to allow the laparoscopic stage 2 resection to be performed.