Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning el...Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast A1-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like ~/5-A1FeSi white intermetallics, and Chinese script-like a-A1FeSi compounds. During high temperature homogenization treatment, only harmful needle-like ^-A1FeSi phase undergoes fragmentation and spheroidizing at its tips, and the destruc- tive needle-like 5-phase does not show any morphological and size changes. Phase transitions from ^-A1FeSi to ^-A1FeSi and from 6-A1FeSi to [3-A1FeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.展开更多
The microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg xZn 0.2Ca (x=0, 1.0, 2.0, 3.0) alloys were investigated in this study. Findings from scanning electron microscope, X-ray diffraction ...The microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg xZn 0.2Ca (x=0, 1.0, 2.0, 3.0) alloys were investigated in this study. Findings from scanning electron microscope, X-ray diffraction and transmission electron microscopy results indicate that the amount of ternary Ca2Mg6Zn3 phase, as the only secondary phase in 1.0Zn, 2.0Zn, and 3.0Zn alloys, gradually increases with the addition of Zn, while the Mg2Ca phase was observed in the Mg 0.2Ca alloy only. Zn has a strong effect on the orientation and intensity of textures, which also influence mechanical behaviors, as revealed by electron back-scatter diffraction. Among all the alloys, the Mg 2.0Zn 0.2Ca alloy obtains the maximum tensile strength (278 MPa) and yield strength (230 MPa). Moreover, Zn addition has an evident influence on the corrosion properties of Mg xZn 0.2Ca alloy, and Mg 1.0Zn 0.2Ca alloy exhibits the minimum corrosion rate. This paper provides a novel low-alloyed magnesium alloy as a potential biodegradable material.展开更多
Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and sp...Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and spray forming (SF) processes, were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy and X-ray diffraction techniques. The results show that A17Cu2Fe phase can be formed and transformed in TC- and SF-3C alloys between 802-813 K and 800-815 K, respectively. The transformation from β-Al5FeSi to δ-Al4FeSi2 phase via peritectic reaction can occur at around 858-870 K and 876-890 K in TC- and SF-3C alloys, respectively. The starting precipitation temperature of δ-Al4FeSi2 phase as the dominant Fe-bearing phase in the TC-3C alloy is 997 K and the exothermic peak about the peritectic transformation of δ-Al4FeSi2→β-Al5FeSi is not detected in the present DSC experiments. Also, the mechanisms of the microstructural evolution and phase transformation are discussed.展开更多
The microstructure,mechanical properties and corrosion behavior of quaternary degradable Mg−1Zn−0.2Ca−xAg(x=1,2,4 wt.%)alloy wires,intended as anastomotic nails,were investigated.It was found that these Ag-containing ...The microstructure,mechanical properties and corrosion behavior of quaternary degradable Mg−1Zn−0.2Ca−xAg(x=1,2,4 wt.%)alloy wires,intended as anastomotic nails,were investigated.It was found that these Ag-containing alloy wires mainly consist of Mg matrix and Ag17Mg54 phase,characterized by SEM,EDS,XRD and TEM.Tensile and knotting tests results demonstrate the superior mechanical properties of these alloy wires.Especially,Mg−1Zn−0.2Ca−4Ag alloy exhibits the highest mechanical properties,i.e.an ultimate tensile strength of 334 MPa and an elongation of 8.6%.Moreover,with increasing Ag content,the corrosion rates of these alloy wires remarkably increase due to the formation of more micro-galvanic coupling between Mg matrix and Ag17Mg54 phase,shown by mass loss and scanning Kelvin probe force microscopy(SKPFM)results.The present alloy can be completely degraded within 28 d,satisfying the property requirements of anastomotic nails.展开更多
The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, ...The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) axe investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstxucture of the 0.6Zn alloy is composed of ct-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain ct-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and txonsmission electron microscopy (TEM) analyses. Moreover, with in- creasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides on updated investigation of the alloy composi- tion-microstxucture-property relationships of different Zn-containing Mg-Zn-Ca alloys.展开更多
Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bon...Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.展开更多
The microstructure,mechanical properties and corrosion behaviors of as-cast ternary Mg-2Zn-x Ca(x=0,0.2,0.4,0.8)alloys have been investigated in this study.Results indicate that the microstructure of Mg-Zn-Ca alloys c...The microstructure,mechanical properties and corrosion behaviors of as-cast ternary Mg-2Zn-x Ca(x=0,0.2,0.4,0.8)alloys have been investigated in this study.Results indicate that the microstructure of Mg-Zn-Ca alloys can be significantly refined with increasing Ca concentration.Moreover,the alloys with different contents of Ca exhibit the different phases formation behaviors,i.e.α-Mg+Ca_2Mg_6Zn_3 phases for Mg-2Zn-0.2Ca and Mg-2Zn-0.4Ca alloys,andα-Mg+Ca_2Mg_6Zn_3+Mg_2Ca phases for Mg-2Zn-0.8Ca alloy,respectively.Among all the alloys,the maximum ultimate tensile strength and elongation(161 MPa and 9.1%)can be attained for the Mg-2Zn-0.2Ca alloy.Corrosion tests in Hanks’balanced salt solution indicated that Ca addition is detrimental to corrosion resistance of Mg-2Zn alloy.The relationship between as-cast microstructure and properties for different Ca-containing alloys is also discussed in detail.展开更多
Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was stud...Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was studied using X-ray diffractometry. Transmission electron microscopy and electron backscattered diffraction were used to characterize the martensite transformation and the distribution of austenite grain size after annealing. The recrystallization mechanism during cryogenic rolling was a reversal of martensite into austenite and austenite growth. Cryogenic rolling followed by annealing refined grains to 4.7 μm compared with 8.7 μm achieved under room-temperature rolling, as shown by the electron backscattered diffraction images. Tensile tests showed significantly improved mechanical properties after cryogenic rolling as the yield strength was enhanced by 47% compared with room-temperature rolling.展开更多
The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testin...The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations.展开更多
The microstructure, interface thickness, element distribution and interfacial mechanical behavior of Ti-6Al-4V/Al couples prepared by an insert moulding method were investigated in depth in this paper. Moreover, Ti/Al...The microstructure, interface thickness, element distribution and interfacial mechanical behavior of Ti-6Al-4V/Al couples prepared by an insert moulding method were investigated in depth in this paper. Moreover, Ti/Al bonding was also given as a comparison for understanding the interface bonding mechanism. It is shown that there is much thinner compact sub-layer for the interface of the Ti-6Al-4V/Al joint, whose morphology is obviously different from that of the Ti/Al joint. The Ti-6Al-4V/Al interface has been proven to contain a slight content of vanadium. Moreover, both the shear strength and the interface reaction rate of Ti-6Al-4V/Al compound materials are lower than those of the Ti/Al ones.展开更多
Nanocrystalline NiCrC alloy powders with a qualified particle size distribution for thermal spraying were synthesized using the cryogenic ball milling (cryomilling) method. The morphology, microstructure, size distr...Nanocrystalline NiCrC alloy powders with a qualified particle size distribution for thermal spraying were synthesized using the cryogenic ball milling (cryomilling) method. The morphology, microstructure, size distribution, and phase transformation of the powders were characterized by scanning electron microscopy (SEM), laser scattering for particle size analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). After cryomilling for 20 h, the average grain size of the as-milled powders approached a constant value of 30 nm by XRD measurement. The average particle size slightly increased from 17.5 to 20.3 μm during the 20-h milling. About 90vol% of the powders satisfied the requirement for thermal spraying with the particle dimension of 10-50 μm, and most of the powders exhibited spherical morphology, which were expected to have good fluidity during thermal spraying. The Cr2O3 phase formed during the cryornilling process as revealed in the XRD spectra, which was expected to enhance the thermal stability of the as-milled powders during the followed thermal spraying or other heat treatment.展开更多
Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temper...Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment.展开更多
The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstrucmral observations, and electron backscatter di...The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstrucmral observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio (r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geome- try value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001 } 〈110〉 and Goss {110}〈001〉 orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H {001 } 〈 110〉 orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.展开更多
The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mai...The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460℃, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460℃ for 168 h and by a two-step homogenization process conducted at 460℃ for 24 h and 475℃ for 24 h (460℃/24 h + 475℃/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460℃/24 h + 475℃/24 h treatment.展开更多
The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grai...The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni,accompanied by the formation of Q(Al3Mg9Si7Cu2)precipitates around the spherical Fe-rich phases.Additionally,Ni addition is beneficial to reducing the grain size in the as-cast state.During the homogenization process,Q phases could be completely dissolved and the grain size could remain basically unchanged.However,compared with the Ni-free alloy,the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment.After thermomechanical processing,the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy.Accordingly,a reasonable Ni addition positively affected the microstructure and formability of the alloys.展开更多
The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the all...The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the alloy.The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture.After the pre-aging treatment and natural aging treatment(T4 P treatment),in contrast to the sheet with a uniform particle size distribution,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio(r) and strain hardening exponent(n).After solution treatment,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution.Additionally,they possess almost identical weak recrystallization textures,and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.展开更多
The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show...The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show that the strength in the solid state tends to increase with decreasing temperature. The strain rate plays an important role in the stress–strain behaviors at higher temperatures, whereas the influence becomes less pronounced and irregular when the temperature is less than 250°C. The experimental data were fitted to the extended Ludwik equation, which is suitable to describe the mechanical behavior of the materials in the as-cast state. In the semi-solid state, both the strength and ductility of the alloy are high near the solidus temperature and decrease drastically with decreasing solid fraction. As the solid fraction is less than 0.97, the maximum strength only slightly decreases, whereas the post-peak ductility begins to increase. The experimental data were fitted to the modified creep law, which is used to describe the mechanical behavior of semi-solid materials, to determine the equivalent parameter fGBWL, i.e., the fraction of grain boundaries covered by liquid phase.展开更多
AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scann...AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scanning electron microscopy(SEM), electron backscatter diffraction(EBSD), and X-ray diffraction(XRD). The mechanical properties of the sheets were tested through in-plane uniaxial tensile tests at ambient temperature. The tensile stress was exerted in the rolling direction(RD) and transverse directions(TD). The microstructural and textural evolutions of the alloy during cryorolling were investigated. Due to active twining during rolling, the initial texture significantly influenced the microstructural and textural evolutions of the rolled sheets. A {10 12} extension twin was found as the dominated twin-type in the cryorolled samples. After cryogenic rolling, the ductility of the samples decreased while the strength increased. Twinning also played an important role in explaining the mechanical differences between the rolled samples with different initial textures. The samples were significantly strengthened by the high stored energy accumulated from cryorolling.展开更多
Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of A1-Mg-Mn-Zn alloys. In this study, sensi- tizing treatment was applied to an A1-Mg-Mn-Zn alloy to mo...Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of A1-Mg-Mn-Zn alloys. In this study, sensi- tizing treatment was applied to an A1-Mg-Mn-Zn alloy to modify the precipitation at the grain boundaries or in the grains. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) were used to characterize various second-phase particles and determine their orientation relationship with the A1 matrix. After sensitizing treatment, z-phase (Mg32(Al, Zn)49) is observed to precipitate along the grain boundaries in a coarser size, producing a discontinuous grain boundary precipitate structure. In addition, Mn-rich particles are found to form with various shapes, such as global, plate and rhombus.展开更多
基金financially supported by the Beijing Natural Science Foundation (No. 2112030)
文摘Al-Mg-Si-Cu alloys with and without Zn addition were fabricated by conventional ingot metallurgy method. The microstructures and properties were investigated using optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), tensile test, hardness test, and electrical conductivity measurement. It is found that the as-cast A1-Mg-Si-Cu-Zn alloy is composed of coarse dendritic grains, long needle-like ~/5-A1FeSi white intermetallics, and Chinese script-like a-A1FeSi compounds. During high temperature homogenization treatment, only harmful needle-like ^-A1FeSi phase undergoes fragmentation and spheroidizing at its tips, and the destruc- tive needle-like 5-phase does not show any morphological and size changes. Phase transitions from ^-A1FeSi to ^-A1FeSi and from 6-A1FeSi to [3-A1FeSi are also not found. Zn addition improves the aging hardening response during the former aging stage and postpones the peak-aged hardness to a long aging time. In T4 condition, Zn addition does not obviously increase the yield strength and decrease the elongation, but it markedly improves paint-bake hardening response during paint-bake cycle. The addition of 0.5wt% Zn can lead to an increment of 99 MPa in yield strength compared with the value of 69 MPa for the alloy without Zn after paint-bake cycle.
基金The Major State Research and Development Program of China (No. 2016YFB0300801)the National Natural Science Foundation of China (Nos. 51671017 and 51971020)+3 种基金the Fundamental Research Funds for the Central Universities (No. FRF-IC-19-010)Beijing Laboratory of Metallic Materials and Processing for Modern Transportationthe fund of the State Key Laboratory of Solidification Processing in NWPU (No. SKLSP201835)the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials (2018-Z04)
文摘The microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg xZn 0.2Ca (x=0, 1.0, 2.0, 3.0) alloys were investigated in this study. Findings from scanning electron microscope, X-ray diffraction and transmission electron microscopy results indicate that the amount of ternary Ca2Mg6Zn3 phase, as the only secondary phase in 1.0Zn, 2.0Zn, and 3.0Zn alloys, gradually increases with the addition of Zn, while the Mg2Ca phase was observed in the Mg 0.2Ca alloy only. Zn has a strong effect on the orientation and intensity of textures, which also influence mechanical behaviors, as revealed by electron back-scatter diffraction. Among all the alloys, the Mg 2.0Zn 0.2Ca alloy obtains the maximum tensile strength (278 MPa) and yield strength (230 MPa). Moreover, Zn addition has an evident influence on the corrosion properties of Mg xZn 0.2Ca alloy, and Mg 1.0Zn 0.2Ca alloy exhibits the minimum corrosion rate. This paper provides a novel low-alloyed magnesium alloy as a potential biodegradable material.
基金supported by the Major State Basic Research & Development Program of China (No2006CB605204)
文摘Microstructural evolution and phase transformation induced by different heat treatments of the hypereutectic aluminium-silicon alloy, Al-25Si-5Fe-3Cu (wt%, signed as 3C), fabricated by traditional cast (TC) and spray forming (SF) processes, were investigated by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy and X-ray diffraction techniques. The results show that A17Cu2Fe phase can be formed and transformed in TC- and SF-3C alloys between 802-813 K and 800-815 K, respectively. The transformation from β-Al5FeSi to δ-Al4FeSi2 phase via peritectic reaction can occur at around 858-870 K and 876-890 K in TC- and SF-3C alloys, respectively. The starting precipitation temperature of δ-Al4FeSi2 phase as the dominant Fe-bearing phase in the TC-3C alloy is 997 K and the exothermic peak about the peritectic transformation of δ-Al4FeSi2→β-Al5FeSi is not detected in the present DSC experiments. Also, the mechanisms of the microstructural evolution and phase transformation are discussed.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(51671017 and 51971020)the Beijing Municipal Natural Science Foundation,China(2202033)+2 种基金Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China,the Fundamental Research Funds for the Central Universities,China(FRF-IC-19-015)the Major State Research and Development Program of China(2016YFB0300801)the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials,China(2018-Z04).
文摘The microstructure,mechanical properties and corrosion behavior of quaternary degradable Mg−1Zn−0.2Ca−xAg(x=1,2,4 wt.%)alloy wires,intended as anastomotic nails,were investigated.It was found that these Ag-containing alloy wires mainly consist of Mg matrix and Ag17Mg54 phase,characterized by SEM,EDS,XRD and TEM.Tensile and knotting tests results demonstrate the superior mechanical properties of these alloy wires.Especially,Mg−1Zn−0.2Ca−4Ag alloy exhibits the highest mechanical properties,i.e.an ultimate tensile strength of 334 MPa and an elongation of 8.6%.Moreover,with increasing Ag content,the corrosion rates of these alloy wires remarkably increase due to the formation of more micro-galvanic coupling between Mg matrix and Ag17Mg54 phase,shown by mass loss and scanning Kelvin probe force microscopy(SKPFM)results.The present alloy can be completely degraded within 28 d,satisfying the property requirements of anastomotic nails.
基金supported by the National Natural Science Foundation of China(No.51671017)Fundamental Research Funds for the Central Universities(No.FRF-GF-17-B3)+1 种基金Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials(Nos.2016Z-11,2017Z-08)State's Key Project of Research and Development Plan(No.2016YFB0300801)
文摘The effects of Zn content on the microstxucture and the mechanical and corrosion properties of as-cast low-alloyed Mg-xZn~.2Ca alloys (x = 0.6wt%, 2.0wt%, 2.5wt%, hereafter denoted as 0.6Zn, 2.0Zn, and 2.5Zn alloys, respectively) axe investigated. The results show that the Zn content not only influences grain refinement but also induces different phase precipitation behaviors. The as-cast microstxucture of the 0.6Zn alloy is composed of ct-Mg, Mg2Ca, and Ca2Mg6Zn3 phases, whereas 2.0Zn and 2.5Zn alloys only contain ct-Mg and Ca2Mg6Zn3 phases, as revealed by X-ray diffraction (XRD) and txonsmission electron microscopy (TEM) analyses. Moreover, with in- creasing Zn content, both the ultimate tensile strength (UTS) and the elongation to fracture first increase and then decrease. Among the three investigated alloys, the largest UTS (178 MPa) and the highest elongation to fracture (6.5%) are obtained for the 2.0Zn alloy. In addition, the corrosion rate increases with increasing Zn content. This paper provides on updated investigation of the alloy composi- tion-microstxucture-property relationships of different Zn-containing Mg-Zn-Ca alloys.
基金Project(51671017)supported by the National Natural Science Foundation of ChinaProject(FRF-GF-17-B3)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Project supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,ChinaProject(SKLSP201835)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU,China
文摘Mg/Cu bimetal composites were prepared by compound casting method, and the microstructure evolution, phase constitution and bonding strength at the interface were investigated.It is found that a good metallurgical bonding can be achieved at the interface of Mg and Cu,which consists of two sub-layers,i.e.,layer I with 30μm on the copper side composed of Mg2Cu matrix phase, on which a small amount of dendritic MgCu2 phase was randomly distributed;layerⅡ with 140μm on the magnesium side made up of the lamellar nano-eutectic network Mg2Cu+(Mg) and a small amount of detached Mg2Cu phase. The average interfacial shear strength of the bimetal composite is measured to be 13 MPa.This study provides a new fabrication process for the application of Mg/Cu bimetal composites as the hydrogen storage materials.
基金supported by National Natural Science Foundation of China(51671017)Fundamental Research Funds for the Central Universities(No.FRF-GF-17-B3)+2 种基金Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials(No.2016Z-11,2017Z-08)the fund of the State Key Laboratory of Solidification Processing in NWPU(SKLSP201835)State's Key Project of Research and Development Plan(No.2016YFB0300801)
文摘The microstructure,mechanical properties and corrosion behaviors of as-cast ternary Mg-2Zn-x Ca(x=0,0.2,0.4,0.8)alloys have been investigated in this study.Results indicate that the microstructure of Mg-Zn-Ca alloys can be significantly refined with increasing Ca concentration.Moreover,the alloys with different contents of Ca exhibit the different phases formation behaviors,i.e.α-Mg+Ca_2Mg_6Zn_3 phases for Mg-2Zn-0.2Ca and Mg-2Zn-0.4Ca alloys,andα-Mg+Ca_2Mg_6Zn_3+Mg_2Ca phases for Mg-2Zn-0.8Ca alloy,respectively.Among all the alloys,the maximum ultimate tensile strength and elongation(161 MPa and 9.1%)can be attained for the Mg-2Zn-0.2Ca alloy.Corrosion tests in Hanks’balanced salt solution indicated that Ca addition is detrimental to corrosion resistance of Mg-2Zn alloy.The relationship between as-cast microstructure and properties for different Ca-containing alloys is also discussed in detail.
基金financially supported by the National Key Project of Research and Development Program of China (No. 2016YFB0300801)the National Natural Science Foundation of China (No. 51401016)State Key Laboratory for Advanced Metals and Materials of China
文摘Metastable 304 austenitic stainless steel was subjected to rolling at cryogenic and room temperatures, followed by annealing at different temperatures from 500 to 950°C. Phase transition during annealing was studied using X-ray diffractometry. Transmission electron microscopy and electron backscattered diffraction were used to characterize the martensite transformation and the distribution of austenite grain size after annealing. The recrystallization mechanism during cryogenic rolling was a reversal of martensite into austenite and austenite growth. Cryogenic rolling followed by annealing refined grains to 4.7 μm compared with 8.7 μm achieved under room-temperature rolling, as shown by the electron backscattered diffraction images. Tensile tests showed significantly improved mechanical properties after cryogenic rolling as the yield strength was enhanced by 47% compared with room-temperature rolling.
基金financially supported by the National Natural Science Foundation of China(No.51301017)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-13-034A)
文摘The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations.
基金supported by The Fundamental Research Funds for the Central Universities(No.FRF-TD-12-001)Constructed Project for the Key Laboratory of Beijing(No.FRF-SD-B-378 005B)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120006110019)the Opening Research Fund of State Key Laboratory for Advanced Metals and Materials(No.2012Z-13)
文摘The microstructure, interface thickness, element distribution and interfacial mechanical behavior of Ti-6Al-4V/Al couples prepared by an insert moulding method were investigated in depth in this paper. Moreover, Ti/Al bonding was also given as a comparison for understanding the interface bonding mechanism. It is shown that there is much thinner compact sub-layer for the interface of the Ti-6Al-4V/Al joint, whose morphology is obviously different from that of the Ti/Al joint. The Ti-6Al-4V/Al interface has been proven to contain a slight content of vanadium. Moreover, both the shear strength and the interface reaction rate of Ti-6Al-4V/Al compound materials are lower than those of the Ti/Al ones.
基金supported by the National High-Tech Research and Development Program of China (No.2002AA331080)
文摘Nanocrystalline NiCrC alloy powders with a qualified particle size distribution for thermal spraying were synthesized using the cryogenic ball milling (cryomilling) method. The morphology, microstructure, size distribution, and phase transformation of the powders were characterized by scanning electron microscopy (SEM), laser scattering for particle size analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). After cryomilling for 20 h, the average grain size of the as-milled powders approached a constant value of 30 nm by XRD measurement. The average particle size slightly increased from 17.5 to 20.3 μm during the 20-h milling. About 90vol% of the powders satisfied the requirement for thermal spraying with the particle dimension of 10-50 μm, and most of the powders exhibited spherical morphology, which were expected to have good fluidity during thermal spraying. The Cr2O3 phase formed during the cryornilling process as revealed in the XRD spectra, which was expected to enhance the thermal stability of the as-milled powders during the followed thermal spraying or other heat treatment.
基金financially supported by the National Natural Science Foundation of China (Nos.51671017 and 51471024)Fundamental Research Funds for the Central Universities (No.FRFBR-15-078A)
文摘Ti-6Al-4V/Al7050 joints were fabricated by a method of insert molding and corresponding interfacial microstructure and mechanical properties were investigated. The interfacial thickness was sensitive to holding temperature during the first stage, and a good metallurgical bonding interface with a thickness of about 90 μm can be obtained at 750°C. X-ray diffraction, transmission electron microscopy, and thermodynamic analyses showed that the interface mainly contained intermetallic compound TiAl_3 and Al matrix. The joints featured good mechanical properties, i.e., shear strength of 154 MPa, tensile strength of 215 MPa, and compressive strength of 283 MPa, which are superior to those of joints fabricated by other methods. Coherent boundaries between Al/TiAl_3 and TiAl_3/Ti were confirmed to contribute to outstanding interfacial mechanical properties and also explained constant fracture occurrence in the Al matrix. Follow-up studies should focus on improving mechanical properties of the Al matrix by deformation and heat treatment.
基金supported by the National High Technical Research and Development Program of China (No. 2013AA032403)the National Natural Science Foundation of China (No. 51301016)+1 种基金the Fundamental Research Funds for the Central Universities (No. FRF-TP-14-097A2)the Constructed Project for Key Laboratory of Beijing (No. FRF-SD-B-005B)
文摘The effect of rolling geometry on mechanical properties, microstructure, and recrystallization texture of Al-Mg-Si alloys was studied by means of tensile tests, microstrucmral observations, and electron backscatter diffraction measurements. The results reveal that the elongation and the average plasticity strain ratio (r) values of the T4P (pre-aging plus natural aging)-treated alloy sheet with a rolling geome- try value between 1 and 3 are somewhat higher than those of the T4P-treated sheet with a rolling geometry value between 3 and 6. The deformation and recrystallization microstructures of the sheet with a rolling geometry value between 1 and 3 are more uniform than those of the sheet with a rolling geometry value between 3 and 6. The former also possesses somewhat higher surface quality. H {001 } 〈110〉 and Goss {110}〈001〉 orientations are the main recrystallization texture components for the former case, whereas the latter case only includes H {001 } 〈 110〉 orientation. Texture gradients are present in the two alloy sheets. Shear texture component F on the surface of the sheet with a rolling geometry value between 3 and 6 and its higher texture gradients have revealed that non-uniform deformation occurred during cold rolling. The effects of texture on the yield strength and r value were also discussed.
基金supported by the Fundamental Research Funds for the Central Universities of China (No. FRF-TD-12-001)the Beijing Laboratory of Modern Traffic Metal Materials and Processing Technology
文摘The microstructural evolution and phase transformations of a high-alloyed Al-Zn-Mg-Cu alloy (Al-8.59Zn-2.00Mg-2.44Cu,wt%) during homogenization were investigated. The results show that the as-cast microstructure mainly contains dendritic α(Al), non-equilibrium eutectics (α(Al) + Mg(Zn,Al,Cu)2), and the θ (Al2Cu) phase. Neither the T (Al2Mg3Zn3) phase nor the S (Al2CuMg) phase was found in the as-cast alloy. The calculated phase components according to the Scheil model are in agreement with experimental results. During homogenization at 460℃, all of the θ phase and most of the Mg(Zn,Al,Cu)2 phase were dissolved, whereas a portion of the Mg(Zn,Al,Cu)2 phase was transformed into the S phase. The type and amount of residual phases remaining after homogenization at 460℃ for 168 h and by a two-step homogenization process conducted at 460℃ for 24 h and 475℃ for 24 h (460℃/24 h + 475℃/24 h) are in good accord with the calculated phase diagrams. It is concluded that the Al-8.59Zn-2.00Mg-2.44Cu alloy can be homogenized adequately under the 460℃/24 h + 475℃/24 h treatment.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0300801)the National Natural Science Foundation of China(Nos.51871029,51571023,and 51301016)+2 种基金Beijing Natural Science Foundation(No.2172038)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation(No.FRF-SD-B-005B)The China Scholarship Council for financial support to M.X.Guo
文摘The effect of adding 0.03wt%Ni on the microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys was systematically studied.The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni,accompanied by the formation of Q(Al3Mg9Si7Cu2)precipitates around the spherical Fe-rich phases.Additionally,Ni addition is beneficial to reducing the grain size in the as-cast state.During the homogenization process,Q phases could be completely dissolved and the grain size could remain basically unchanged.However,compared with the Ni-free alloy,the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment.After thermomechanical processing,the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy.Accordingly,a reasonable Ni addition positively affected the microstructure and formability of the alloys.
基金financially supported by the National Key Research and Development Program of China (No.2016YFB0300801)the National Natural Science Foundation of China (No.51571023)+3 种基金Zhejiang Provincial Natural Science Foundation of China (No.LQ17E010001)the Beijing Municipal Natural Science Foundation (No.2172038)the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation (No.FRF-SD-B-005B)sponsored by the K.C.Wong Magna Fund in Ningbo University
文摘The effect of particle size distribution on the microstructure,texture,and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties,microstructure,and texture of the alloy.The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture.After the pre-aging treatment and natural aging treatment(T4 P treatment),in contrast to the sheet with a uniform particle size distribution,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio(r) and strain hardening exponent(n).After solution treatment,the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution.Additionally,they possess almost identical weak recrystallization textures,and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.
基金supported by the Fundamental Research Funds for the Central Universities of China(No.FRF-BR-15-078A)Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,Specialized Research Fund for the Doctoral Program of Higher Education(No.20120006110019)the Opening Research Fund of the State Key Laboratory for Advanced Metals and Materials(Nos.2012Z-13,2014ZD-02,and 2015-ZD08)
文摘The mechanical properties and constitutive behaviors of as-cast AA7050 in both the solid and semi-solid states were determined using the on-cooling and in situ solidification approaches, respectively. The results show that the strength in the solid state tends to increase with decreasing temperature. The strain rate plays an important role in the stress–strain behaviors at higher temperatures, whereas the influence becomes less pronounced and irregular when the temperature is less than 250°C. The experimental data were fitted to the extended Ludwik equation, which is suitable to describe the mechanical behavior of the materials in the as-cast state. In the semi-solid state, both the strength and ductility of the alloy are high near the solidus temperature and decrease drastically with decreasing solid fraction. As the solid fraction is less than 0.97, the maximum strength only slightly decreases, whereas the post-peak ductility begins to increase. The experimental data were fitted to the modified creep law, which is used to describe the mechanical behavior of semi-solid materials, to determine the equivalent parameter fGBWL, i.e., the fraction of grain boundaries covered by liquid phase.
基金financially supported by the National Natural Science Foundation of China(No.51401019)the China Postdoctoral Science Foundation(No.2014M550612)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-14-048A1 and FRF-TP-15-055A2)the Common Construction Project from Beijing Municipal Commission of Education(No.FRF-SD-13-005B)
文摘AZ31 magnesium alloy sheets with different strong textures were cryorolled at the liquid-nitrogen temperature to the strain of 4% and 8%. The microstructure and texture of the rolled sheets were investigated via scanning electron microscopy(SEM), electron backscatter diffraction(EBSD), and X-ray diffraction(XRD). The mechanical properties of the sheets were tested through in-plane uniaxial tensile tests at ambient temperature. The tensile stress was exerted in the rolling direction(RD) and transverse directions(TD). The microstructural and textural evolutions of the alloy during cryorolling were investigated. Due to active twining during rolling, the initial texture significantly influenced the microstructural and textural evolutions of the rolled sheets. A {10 12} extension twin was found as the dominated twin-type in the cryorolled samples. After cryogenic rolling, the ductility of the samples decreased while the strength increased. Twinning also played an important role in explaining the mechanical differences between the rolled samples with different initial textures. The samples were significantly strengthened by the high stored energy accumulated from cryorolling.
基金financially supported by the National Natural Science Foundation of China (No.51301017)the Common Construction Project from Beijing Municipal Commission of Education
文摘Alloying elements, present in the aluminum solid solution or the precipitates, influence the corrosion resistance of A1-Mg-Mn-Zn alloys. In this study, sensi- tizing treatment was applied to an A1-Mg-Mn-Zn alloy to modify the precipitation at the grain boundaries or in the grains. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) were used to characterize various second-phase particles and determine their orientation relationship with the A1 matrix. After sensitizing treatment, z-phase (Mg32(Al, Zn)49) is observed to precipitate along the grain boundaries in a coarser size, producing a discontinuous grain boundary precipitate structure. In addition, Mn-rich particles are found to form with various shapes, such as global, plate and rhombus.