期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Geology and mineralization of the Hongqiling large magmatic nickel-copper-cobalt deposit(22×10^(4)t)in Jilin Province,China:A review
1
作者 Cong Chen Yu-chao Gu +14 位作者 Di Zhang Tao-tao Wu Ai Li Yun-sheng Ren Qing-qing Shang Jian Zhang Xiong-fei Bian Fei Su jia-lin yang Qiu-shi Sun Xiao-hai Li Wan-zhen Liu Zhen-ming Sun Sen Zhang Yu-hui Feng 《China Geology》 CAS CSCD 2024年第4期762-796,共35页
The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4... The Hongqiling large nickel-copper-cobalt deposit(hereafter referred to as the Hongqiling deposit),a typical mafic-ultramafic copper-nickel deposit in China,boasts proven Ni(Ni)resources of approximately 22×10^(4)t,associated copper resources of 2×10^(4)t,and associated cobalt(Co)resources of 0.5×10^(4)t,with Ni reserves ranking 10th among China's magmatic nickel deposits.Geotectonically,the Hongqiling deposit is situated in the superimposed zone between the Xing'an-Mongolian orogenic belt and the circum-Western Pacific's active continental margin belt.Its ore-bearing plutons occur within the metamorphic rocks of the Ordovician Hulan Group,with the emplacement of plutons and the locations of orebodies governed by the deep-seated Huifahe fault and its secondary NW-trending Fujia-Hejiagou-Beixinglong-Changsheng fault zone.In the deposit,the rock assemblages of ore-bearing plutons predominantly encompass gabbro-pyroxenite-olivine pyroxenite-pyroxene peridotite(pluton No.1)and norite-orthopyroxenite-harzburgite(pluton No.7),with ore-bearing lithofacies consisting primarily of olivine pyroxenite and pyroxenite facies.The Hongqiling deposit hosts stratoid,overhanging lentoid,veined,and pure-sulfide veined orebodies.Its ores principally contain metallic minerals including pyrrhotite,pentlandite,chalcopyrite,violarite,and pyrite.Despite unidentified magma sources of ore-bearing mafic-ultramafic rocks,it is roughly accepted that the magmatic evolution in the Hongqiling deposit primarily involved fractional crystallization and crustal contamination.The ore-forming materials were primarily derived from the upper mantle,mixed with minor crustal materials.The ore-bearing mafic-ultramafic rocks in the deposit,primarily emplaced during the Indosinian(208-239 Ma),were formed in an intense extension setting followed by the collisional orogeny between the North China Plate and the Songnen-Zhangguangcai Range Block during the Middle-Late Triassic.From the perspective of the metallogenic geological setting,surrounding rocks,ore-controlling structures,and rock assemblages,this study identified one favorable condition and seven significant indicators for prospecting for Hongqiling-type nickel deposits and developed a prospecting model of the Hongqiling deposit.These serve as valuable references for exploring similar nickel deposits in the region,as well as the deep parts and margins of the Hongqiling deposit. 展开更多
关键词 Nickel-copper-cobalt deposit Fractional crystallization Crustal contamination MAGMATIC MINERALIZATION Re-Os isotopic age Sulfur isotopic Metallogenic mode Prospecting model Western Pacific’s active continental margin Mineral exploration engineering Hongqiling Jilin
下载PDF
Interface defect induced upgrade of K-storage properties in KFeSO4Fcathode: From lowered Fe-3d orbital energy level to advancedpotassium-ion batteries
2
作者 Yan Liu Zhen-Yi Gu +7 位作者 Yong-Li Heng Jin-Zhi Guo Miao Du Hao-Jie Liang jia-lin yang Kai-yang Zhang Kai Li Xing-Long Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1724-1733,共10页
KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the ele... KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites. 展开更多
关键词 Potassium-ion batteries CATHODE Defect chemistry KFeSO4F Fe–C bond
下载PDF
Ester-based anti-freezing electrolyte achieving ultra-low temperature cycling for sodium-ion batteries 被引量:2
3
作者 Yi-Tong Liu Hao-Jie Liang +6 位作者 Miao Du jia-lin yang Zhen-Yi Gu Xiao-Tong Wang Yuan-Zheng Tang Jin-Zhi Guo Xing-Long Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第15期111-118,共8页
With the continuous advancement of industrialization,sodium-ion batteries(SIBs)need to operate in various challenging circumstances,particularly in extremely cold conditions.However,at ultra-low tem-peratures,the redu... With the continuous advancement of industrialization,sodium-ion batteries(SIBs)need to operate in various challenging circumstances,particularly in extremely cold conditions.However,at ultra-low tem-peratures,the reduced ionic conductivity and sluggish Na+migration of commonly carbonate-based elec-trolytes will inevitably lead to a sharp decrease in the capacity of SIBs.Herein,we design a carboxylate ester-based electrolyte with excellent ultra-low temperature performance by straightforward cosolvent strategy.Due to the low viscosity,melting point,and sufficient ionic conductivity of the designed elec-trolyte,the resulting Na||Na_(3)V_(2)(PO_(4))_(2)O_(2)F can achieve the capacity retention of 96%(100 cycles at 0.1 C)at-40℃ and can also operate stably even at-50℃.Besides,galvanostatic intermittent titration tech-nique(GITT),ex-situ X-ray photoelectron spectroscopy(XPS),and high-resolution transmission electron microscopy(TEM)tests are employed to analyze and confirm that the carboxylate ester-based electrolyte promotes robust and uniform cathode/electrolyte interface layer formation and accelerates ion diffusion kinetics,which collectively facilitates the better low-temperature performance.In addition,the assembled hard carbon||NVPOF full cells further prove the practicability of the carboxylate ester-based electrolyte at low-temperature,which delivers high discharge capacity of 108.4 and 73.0 mAh g^(-1) at-25 and-40℃.This work affords a new avenue for designing advanced low-temperature electrolytes for SIBs. 展开更多
关键词 Sodium-ion batteries Ester-based electrolyte Ultra-low temperature Cathode electrolyte interface Ionic conductivity
原文传递
Structural regulation of coal-derived hard carbon anode for sodium-ion batteries via pre-oxidation 被引量:1
4
作者 Meng-Yuan Su Kai-yang Zhang +6 位作者 Edison Huixiang Ang Xue-Li Zhang Yan-Ning Liu jia-lin yang Zhen-Yi Gu Faaz A.Butt Xing-Long Wu 《Rare Metals》 SCIE EI CAS CSCD 2024年第6期2585-2596,共12页
Hard carbon(HC)is broadly recognized as an exceptionally prospective candidate for the anodes of sodium-ion batteries(SIBs),but their practical implementation faces substantial limitations linked to precursor factors,... Hard carbon(HC)is broadly recognized as an exceptionally prospective candidate for the anodes of sodium-ion batteries(SIBs),but their practical implementation faces substantial limitations linked to precursor factors,such as reduced carbon yield and increased cost.Herein,a cost-effective approach is proposed to prepare a coal-derived HC anode with simple pre-oxidation followed by a post-carbonization process which effectively expands the d_(002)layer spacing,generates closed pores and increases defect sites.Through these modifications,the resulting HC anode attains a delicate equilibrium between plateau capacity and sloping capacity,showcasing a remarkable reversible capacity of 306.3 mAh·g^(-1)at 0.03 A·g^(-1).Furthermore,the produ ced HC exhibits fast reaction kinetics and exceptional rate performance,achieving a capacity of 289 mAh·g^(-1)at 0.1 A·g^(-1),equivalent to~94.5%of that at 0.03 A·g^(-1).When implemented in a full cell configuration,the impressive electrochemical performance is evident,with a notable energy density of 410.6 Wh·kg^(-1)(based on cathode mass).In short,we provide a straightforward yet efficient method for regulating coal-derived HC,which is crucial for the widespread use of SIBs anodes. 展开更多
关键词 Sodium-ion batteries Hard carbon ANODE COAL PRE-OXIDATION
原文传递
Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives
5
作者 Jun-Ming Cao Kai-yang Zhang +2 位作者 jia-lin yang Zhen-Yi Gu Xing-Long Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期496-501,共6页
Sodium-ion batteries(SIBs) and potassium-ion batteries(PIBs) are the most promising alternatives to lithium-ion batteries, and thus have drawn intensive research attention. Porous carbon materials from different precu... Sodium-ion batteries(SIBs) and potassium-ion batteries(PIBs) are the most promising alternatives to lithium-ion batteries, and thus have drawn intensive research attention. Porous carbon materials from different precursors have been widely used as anode materials owing to their compatible storage effectiveness of both larger radii sodium and potassium ions. However, the differential bonding behaviors of Na and K ions with porous carbon-based anode are the significant one worth investigating, which could provide a clean picture of alkali ions storage mechanism. Therefore, in this work, we prepare a porous carbon network derived from sawdust(SDC) wastes, to further analyze the differences on sodium and potassium ions storage behaviors in terms of bond-forming process. It is found that, as-prepared SDC anodes could deliver stable sodium and potassium storage capacities, however, there are notable distinctions in terms of electrochemical behaviors and diffusion processes. By virtue of ex-situ XRD and Raman spectroscopy, the phase transition reaction of potassium ions could be well-observed, and the results shows that the multiple intercalated compounds was formed in SDC network during ions insertion, further resulting in slower diffusion kinetics and larger resistance compared to non-bonded process of sodium ions storage. This study provides more insights into the differences between sodium and potassium ions storage, as well as the energy storage mechanism of porous carbon as anodes for secondary batteries. 展开更多
关键词 Porous carbon Sodium-ion storage Potassium-ion storage Bonding behaviors Batteries
原文传递
Direct reuse of LiFePO_(4)cathode materials from spent lithium-ion batteries:Extracting Li from brine 被引量:7
6
作者 Miao Du Jin-Zhi Guo +6 位作者 Shuo-Hang Zheng Yan Liu jia-lin yang Kai-yang Zhang Zhen-Yi Gu Xiao-Tong Wang Xing-Long Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期556-562,共7页
Due to the serious imbalance between demand and supply of lithium,lithium extraction from brine has become a research hotspot.With the demand for power lithium-ion batteries(LIBs)increased rapidly,a large number of sp... Due to the serious imbalance between demand and supply of lithium,lithium extraction from brine has become a research hotspot.With the demand for power lithium-ion batteries(LIBs)increased rapidly,a large number of spent LiFePO_(4)power batteries have been scrapped and entered the recycling stage.Herein,a novel and efficient strategy is proposed to extract lithium from brine by directly reusing spent LiFePO_(4)powder without any treatment.Various electrochemical test results show that spent LiFePO_(4)electrode has appropriate lithium capacity(14.62 mg_(Li)/g_(LiFePO_(4))),excellent separation performance(α_(Li-Na)=210.5)and low energy consumption(0.768 Wh/g_(Li))in electrochemical lithium extraction from simulated brine.This work not only provides a novel idea for lithium extraction from brine,but also develops an effective strategy for recycling spent LIBs.The concept of from waste to wealth is of great significance to the development of recycling the spent batteries. 展开更多
关键词 Spent lithium-ion batteries REUSE LiFePO_(4) Lithium extraction BRINE
原文传递
Weakly-solvating electrolytes enable ultralow-temperature (-80°C) and high-power CF_(x)/Li primary batteries 被引量:5
7
作者 Hao-Jie Liang Meng-Yuan Su +6 位作者 Xin-Xin Zhao Zhen-Yi Gu jia-lin yang Wei Guo Zhi-Ming Liu Jing-Ping Zhang Xing-Long Wu 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第7期1982-1988,共7页
Fluorinated carbons(CF_(x))/Li primary batteries with high theoretical energy density have been applied as indispensable energy storage devices with no need for rechargeability,yet plagued by poor rate capability and ... Fluorinated carbons(CF_(x))/Li primary batteries with high theoretical energy density have been applied as indispensable energy storage devices with no need for rechargeability,yet plagued by poor rate capability and narrow temperature adaptability in actual scenarios.Herein,benefiting from precise solvation engineering for synergistic coordination of anions and low-affinity solvents,the optimized cyclic ether-based electrolyte is elaborated to significantly facilitate overall reaction dynamics closely correlated to lower desolvation barrier.As a result,the excellent rate(15 C,650 mAh g^(-1))at room-temperature and ultra-lowtemperature performance dropping to-80°C(495 mAh g^(-1)at average output voltage of 2.11 V)is delivered by the end of 1.5 V cut-off voltage,far superior to other organic liquid electrolytes.Furthermore,the CF_(x)/Li cell employing the high-loading electrode(18-22 mg cm^(-2))still yields 1,683 and 1,395 Wh kg^(-1)in the case of-40°C and-60°C,respectively.In short,the novel design strategy for cyclic ethers as basic solvents is proposed to enable the CF_(x)/Li battery with superb subzero performances,which shows great potential in practical application for extreme environments. 展开更多
关键词 CF_(x)/Li primary batteries solvation engineering desolvation barrier ultra-low temperature
原文传递
Direct reuse of oxide scrap from retired lithium-ion batteries:advanced cathode materials for sodium-ion batteries 被引量:4
8
作者 Miao Du Kai-Di Du +7 位作者 Jin-Zhi Guo Yan Liu Vanchiappan Aravindan jia-lin yang Kai-yang Zhang Zhen-Yi Gu Xiao-Tong Wang Xing-Long Wu 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1603-1613,共11页
The direct reuse of retired lithium-ion batteries(LIBs)cathode materials is one of the optimum choices for"waste-to-wealth"by virtue of sustainable and high economic efficiency.Considering the harmfulness of... The direct reuse of retired lithium-ion batteries(LIBs)cathode materials is one of the optimum choices for"waste-to-wealth"by virtue of sustainable and high economic efficiency.Considering the harmfulness of retired LIBs and the serious shortage of lithium resources,in this work,the spent oxide cathode materials after simple treatment are directly applied to the sodium-ion batteries(SIBs)and exhibit promising application possibilities in advanced SIBs.The spent oxide cathode shows an appropriate initial discharge capacity of 109 mAh·g^(-1)and exhibits transition and activation processes at a current density of 25 mA·g^(-1).Further,it demonstrates decent cycle performance and comparatively good electrode kinetics performance(the apparent ion diffusion coefficient at steady state is about 1×10^(-12)cm^(2)·s^(-1)).The"waste-towealth"concept of this work provides an economical and sustainable strategy for directly reusing the retired LIBs and supplies a large amount of raw material for the largescale application of SIBs. 展开更多
关键词 Spent lithium-ion batteries(LIBs) Oxides Reuse Sodium-ion batteries(SIBs) Kinetics property
原文传递
Advanced flame-retardant electrolyte for highly stabilized K-ion storage in graphite anode 被引量:4
9
作者 Hao-Jie Liang Zhen-Yi Gu +8 位作者 Xin-Xin Zhao Jin-Zhi Guo jia-lin yang Wen-Hao Li Bao Li Zhi-Ming Liu Zhong-Hui Sun Jing-Ping Zhang Xing-Long Wu 《Science Bulletin》 SCIE EI CAS CSCD 2022年第15期1581-1588,M0004,共9页
Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reaction... Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution. 展开更多
关键词 Graphite anode K-ion batteries Localized high-concentration electrolyte Interphase modification
原文传递
Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries 被引量:6
10
作者 jia-lin yang Xin-Xin Zhao +5 位作者 Wen-Hao Li Hao-Jie Liang Zhen-Yi Gu Yan Liu Miao Du Xing-Long Wu 《eScience》 2022年第1期95-101,共7页
The amount of spent lithium-ion batteries (LIBs) is constantly increasing as their popularity grows. It is important todevelop a recycling method that cannot only convert large amounts of waste anode graphite into hig... The amount of spent lithium-ion batteries (LIBs) is constantly increasing as their popularity grows. It is important todevelop a recycling method that cannot only convert large amounts of waste anode graphite into high value-addedproducts but is also simple and environmentally friendly. In this work, spent graphite from an anode was transformed into a cathode for dual-ion batteries (DIBs) through a two-step treatment. This method enables the crystalstructure and morphology of spent graphite to recover from the adverse effects of long cycling and be restored to aregular layered structure with appropriate layer spacing for anion intercalation. In addition, pyrolysis of the solidelectrolyte interphase into an amorphous carbon layer prevents the electrode from degrading and improves itscycling performance. The recycled negative graphite has a high reversible capacity of 87 mAh g^(-1) at 200 mA g^(-1),and its rate performance when used as a cathode in DIBs is comparable to that of commercial graphite. This simplerecycling idea turns spent anode graphite into a cathode material with attractive potential and superior electrochemical performance, genuinely achieving sustainable energy use. It also provides a new method for recoveringexhausted batteries. 展开更多
关键词 Spent lithium-ion battery GRAPHITE Reuse Dual-ion batteries Cathode-electrolyte interphase
原文传递
先进钠离子电池材料的前景与展望 被引量:2
11
作者 谷振一 王晓彤 +8 位作者 衡永丽 张凯洋 梁皓杰 杨佳霖 洪辉祥 王鹏飞 尤雅 杜菲 吴兴隆 《Science Bulletin》 SCIE EI CAS CSCD 2023年第20期2302-2306,共5页
According to the reports of"Top Ten Emerging Technologies in Chemistry 2022"released by the International Union of Pure and Applied Chemistry,sodium-ion battery(SIB)technology is identified as a crucial emer... According to the reports of"Top Ten Emerging Technologies in Chemistry 2022"released by the International Union of Pure and Applied Chemistry,sodium-ion battery(SIB)technology is identified as a crucial emerging technology,indicating its promising development for future energy-storage applications[1].In practical applications,commercialized lithium-ion batteries(LIBs)with lithium cobalt oxide and ternary oxide as cathode materials have assumed a dominant position[2].However,these cathode materials of LIBs are highly dependent on expensive cobalt and nickel,rendering them less sustainable for grid-scale energy storage.Conversely,cathode materials in SIBs appear more sustainable due to their lower dependence on cobalt.Furthermore,the strategic importance of reducing over-dependence on lithium resources cannot be overstated.Hence,SIB technology can serve as one of the potential solutions to mitigate this issue[3]. 展开更多
关键词 钠离子电池 BATTERY LITHIUM
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部