In recent years,there has not been much progress in developing anxiolytic drugs.Amongst the barriers are the lack of clarity on the pathogenesis of anxiety disorders,low product conversion rates for developing drugs t...In recent years,there has not been much progress in developing anxiolytic drugs.Amongst the barriers are the lack of clarity on the pathogenesis of anxiety disorders,low product conversion rates for developing drugs targeting the receptors,and species variability.Some scientists have focused on natural medicines,especially herbal medicines in traditional Chinese medicine.New drugs with excellent anxiolytic activity are hoped to be found in herbal medicines with anxiolytic effects.This mini-review summarised three Chinese herbal medicines with anxiolytic effects and anxiolytic herbal formulas used in the traditional Chinese medicine clinic.Several key issues that block the development of new anxiolytic drugs are also discussed.We hope to provide some ideas for researching and developing new anxiolytic drugs and studying anxiolytic components in traditional Chinese medicine.展开更多
Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based...Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃.展开更多
Background:Jinqi Jiangtang tablets(JQJT)have been approved for the treatment of type 2 diabetes mellitus(T2DM)in China for many years.Exploring the effective substances and mechanisms of JQJT is important for its clin...Background:Jinqi Jiangtang tablets(JQJT)have been approved for the treatment of type 2 diabetes mellitus(T2DM)in China for many years.Exploring the effective substances and mechanisms of JQJT is important for its clinical application and further drug research and development.This study aimed to explore the chemical basis and mechanisms of JQJT in the treatment of T2DM.Methods:With network pharmacology,we screened substances in JQJT and their possible targets,then constructed the action network and enriched the biological functions and pathways associated with the active components,and identified the potential targets and mechanisms of JQJT in the treatment of T2DM.Based on the network pharmacology data,we explored the hypoglycemic mechanisms of coptisine in JQJT through western blot and quantitative real-time polymerase chain reaction.Results:Forty-three compounds with good pharmacokinetic properties were identified in JQJT,together with 146 potential biological targets.Among these potential targets,74 were associated with treatment of T2DM.A compound-target network of the 43 compounds against T2DM was constructed.Biological process and signal pathway enrichment analysis of the network highlighted the FoxO signaling pathway.Western blot and quantitative real-time polymerase chain reaction results showed that coptisine,but not epiberberine,significantly inhibited expression of key genes involved in hepatocyte gluconeogenesis by regulating the FoxO1 signaling pathway.Conclusion:Network pharmacology analysis and cell experiments showed that coptisine regulated glucose homeostasis by inhibiting the FoxO1 signaling pathway and hepatic gluconeogenesis,which may be one of the mechanisms of JQJT in the treatment of T2DM.展开更多
Heck reaction is one of the most important carbon-carbon bond forming reactions with wide applications in organic synthesis.Considerable advances of enantioselective Heck reaction have been achieved in the past decade...Heck reaction is one of the most important carbon-carbon bond forming reactions with wide applications in organic synthesis.Considerable advances of enantioselective Heck reaction have been achieved in the past decades.This review focuses on recent development of catalytic asymmetric Heck reaction and reductive Heck reaction,which covers intermolecular and intramolecular versions since 2011.The article is organized in terms of the cat-alysts and olefin substrates.展开更多
文摘In recent years,there has not been much progress in developing anxiolytic drugs.Amongst the barriers are the lack of clarity on the pathogenesis of anxiety disorders,low product conversion rates for developing drugs targeting the receptors,and species variability.Some scientists have focused on natural medicines,especially herbal medicines in traditional Chinese medicine.New drugs with excellent anxiolytic activity are hoped to be found in herbal medicines with anxiolytic effects.This mini-review summarised three Chinese herbal medicines with anxiolytic effects and anxiolytic herbal formulas used in the traditional Chinese medicine clinic.Several key issues that block the development of new anxiolytic drugs are also discussed.We hope to provide some ideas for researching and developing new anxiolytic drugs and studying anxiolytic components in traditional Chinese medicine.
基金financially supported by the National Key Research&Development Program of China(Nos.2020YFB2008300,2020YFB2008303)。
文摘Titanium matrix composites reinforced with ceramic particles are considered a promising engineering material due to their combination of high specific strength,low density,and high modulus.In this study,the TA15-based composites reinforced with a volume fraction of 10% to 25%(TiB+TiC)were prepared using powder metallurgy and casting technique.Microstructural characterization and phase constitution were examined using optical microscopy(OM),scanning electron microscopy(SEM),and X-ray diffraction(XRD).In addition,the microhardness,room temperature(RT)and high temperature(HT)tensile properties of the composites were evaluated.Results revealed that the reinforcements are distributed uniformly even in the composites with a high volume of TiB and TiC.However,as the volume fraction exceeds 15%,TiB and TiC particles become coarsening and exhibit rod-like and dendritic-like morphology.Microhardness increases gradually from 321.2 HV for the base alloy to a maximum of 473.3 HV as the reinforcement increases to 25vol.%.Tensile test results indicate that a reinforcement volume fraction above 20% is beneficial for enhancing tensile strength and yield strength at high temperatures,but it has an adverse effect on room temperature elongation.Conversely,if the reinforcement volume fraction is below 20%,it can improve high-temperature elongation when the temperature exceeds 600℃.
基金the Fundamental Research Funds for the Central Universities(grant number:2021-JYB-XJSJJ-003)the Open Project of State Key Laboratory of Bioactive Substance and Function of Natural Medicines(grant number:GTZK202108)+1 种基金Chinese Society of Toxicology(grant number:CST2021CT101)Discipline Construction Project of Peking Union Medical College(grant number:201920200801).
文摘Background:Jinqi Jiangtang tablets(JQJT)have been approved for the treatment of type 2 diabetes mellitus(T2DM)in China for many years.Exploring the effective substances and mechanisms of JQJT is important for its clinical application and further drug research and development.This study aimed to explore the chemical basis and mechanisms of JQJT in the treatment of T2DM.Methods:With network pharmacology,we screened substances in JQJT and their possible targets,then constructed the action network and enriched the biological functions and pathways associated with the active components,and identified the potential targets and mechanisms of JQJT in the treatment of T2DM.Based on the network pharmacology data,we explored the hypoglycemic mechanisms of coptisine in JQJT through western blot and quantitative real-time polymerase chain reaction.Results:Forty-three compounds with good pharmacokinetic properties were identified in JQJT,together with 146 potential biological targets.Among these potential targets,74 were associated with treatment of T2DM.A compound-target network of the 43 compounds against T2DM was constructed.Biological process and signal pathway enrichment analysis of the network highlighted the FoxO signaling pathway.Western blot and quantitative real-time polymerase chain reaction results showed that coptisine,but not epiberberine,significantly inhibited expression of key genes involved in hepatocyte gluconeogenesis by regulating the FoxO1 signaling pathway.Conclusion:Network pharmacology analysis and cell experiments showed that coptisine regulated glucose homeostasis by inhibiting the FoxO1 signaling pathway and hepatic gluconeogenesis,which may be one of the mechanisms of JQJT in the treatment of T2DM.
基金the National Natural Science Foundation of China(Nos.21702184,21772175,and 91956117)is gratefully acknowledged.
文摘Heck reaction is one of the most important carbon-carbon bond forming reactions with wide applications in organic synthesis.Considerable advances of enantioselective Heck reaction have been achieved in the past decades.This review focuses on recent development of catalytic asymmetric Heck reaction and reductive Heck reaction,which covers intermolecular and intramolecular versions since 2011.The article is organized in terms of the cat-alysts and olefin substrates.