Periodic mould level fluctuation (MLF) during slab casting is a bottleneck for upgrading the surface quality and casting speed especially for hypoperitectic (HP) or ultralow carbon steels. The uneven growth of the...Periodic mould level fluctuation (MLF) during slab casting is a bottleneck for upgrading the surface quality and casting speed especially for hypoperitectic (HP) or ultralow carbon steels. The uneven growth of the initially solidified shell is verified to be one of the important inducements to MLF due to related unsteady bulging in the secondary cooling zone. It is shown that the solidification mode of steels and the contraction behavior can be modified through chemical composition optimization within given composition limits, For high strength low alloy (HSLA) steels, the actual peritectic points calculated by Thermo-Calc software may change remarkably with the slight variations of alloying element contents. Accordingly, the narrow limit of chemical composition of HP steels through optimization is proven to be one of the effective factors to control the popular MLF phenomenon during slab casting.展开更多
Two silicon resins with excellent thermal stability,JH1123 and JH7102,are used as the insulated agents and binders for the gas-atomized FeSiAl powder,and corresponding magnetic powder cores(MPCs)are fabricated.The ins...Two silicon resins with excellent thermal stability,JH1123 and JH7102,are used as the insulated agents and binders for the gas-atomized FeSiAl powder,and corresponding magnetic powder cores(MPCs)are fabricated.The insulation capability and application prospects of the two silicon resins are evaluated by comparing the magnetic properties of the coated powder and MPCs.The scanning electron microscopy,energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy results show that uniform insulation layers are both formed on the powder surfaces.JH1123 has stronger binding ability,and the JH1123-coated powder exhibits severe agglomeration,with d50(average particle size)approximately twice that of the JH7102-coated powder.Both as-prepared MPCs exhibit outstanding soft magnetic properties.Wherein,the permeability of FeSiAl@JH1123 is up to 74.0,which is 35.5%higher than that of FeSiAl@JH7102 because JH1123 can further improve the density of the MPCs.As for FeSiAl@JH7102,it has better direct current bias and lower core loss of 716.9 mW cm^(−3) at 20 mT and 1000 kHz due to its lower coercivity and greater anti-magnetic saturation ability.A comprehensive comparison shows that FeSiAl@JH1123 is suitable for medium and high frequency applications,while FeSiAl@JH7102 is more suitable for high frequency applications.This indicates that the use of JH1123 and JH7102 silicon resins for binding and insulated coating not only simplifies the preparation process of MPCs,but also enables the controlled production of MPCs for different applications.展开更多
Obtaining a reasonable mold flow field for casting slabs with different sections is challenging by solely modifying the nozzle structure and continuous casting process. Research was conducted on small-sectioned (1000 ...Obtaining a reasonable mold flow field for casting slabs with different sections is challenging by solely modifying the nozzle structure and continuous casting process. Research was conducted on small-sectioned (1000 mm × 220 mm) and large-sectioned (3250 mm × 220 mm) slab continuous casting molds with a fixed nozzle form (concave bottom nozzle, side port inclination angle of 0°). A three-dimensional electromagnetic model is established to analyze the current frequency, installation position, and rotation angle under the active deceleration mode and acceleration mode. The results indicate that, regardless of the deceleration mode for small-sectioned slabs or the acceleration mode for large-sectioned slabs, the magnetic flux density in the mold decreases with increasing current frequency. However, the maximum electromagnetic force initially increases and then decreases, suggesting that both electromagnetic modes have the same optimal current frequency (3 Hz). The optimal mechanical design parameters for the deceleration mode of electromagnetic variable flow device (EM-VFD) with the small-sectioned slab are as follows: installation position Z = 115 mm and rotation angle of 15°, ensuring that the maximum electromagnetic force is applied to the nozzle jet area. For the acceleration mode of the large-sectioned slab EM-VFD, the optimal mechanical design parameters are as follows: Z = 115 mm and rotation angle of 10°, ensuring that the maximum electromagnetic force is applied to 1/4 and 3/4 areas of the wide face. These findings indicate that the new electromagnetic variable flow device, which can actively adjust the flow rate and angle of the steel even under given working conditions, provides the possibility for reasonable control of the mold’s flow field.展开更多
The influence of Al content(0.0053,0.0171,and 0.0578 wt.%)on the modification behavior of non-metallic inclusions in 20CrMoVTiB steel treated with rare earth elements was studied through high-temperature experiments a...The influence of Al content(0.0053,0.0171,and 0.0578 wt.%)on the modification behavior of non-metallic inclusions in 20CrMoVTiB steel treated with rare earth elements was studied through high-temperature experiments and thermodynamic simulation.The results showed that the modification products varied with the Al content in steel under 0.01 wt.%of Ce addition.The formation sequence of typical rare earth inclusions in steel with the increase in Al content was Ce_(2)O_(3)→CeAlO_(3)→CeAl_(11)O_(18),and the final stable products were highly Al content dependent.When the Al content was 0.0053 wt.%,the stable phase in steel was Ce2O3;while the[Al]reached 0.0171 wt.%,the stable phase became CeA1O_(3).As the A1 content reached 0.0578 wt.%,CeAl_(11)O_(18) became the stable phase.As a result,increasing the Al content could inhibit the precipitation of Ce_(2)O_(3) inclusions in steel while promote the formation of CeAIO3 and CeAl_(11)O_(18) inclusions.In addition,both Ca treatment and Ce treatment could effectively refine the size of inclusions in steel by changing their types.However,the feeding amount of Ca wire into molten steel should be appropriately reduced under the condition of adding Ce simultaneously,which is expected to be beneficial for an improved Ce treatment effect.展开更多
The propagation form of internal cracks induced by continuous casting soft reduction and the control strategy for enhancing the internal quality of 45 steel through industrial trials and a three-dimensional flow-heat ...The propagation form of internal cracks induced by continuous casting soft reduction and the control strategy for enhancing the internal quality of 45 steel through industrial trials and a three-dimensional flow-heat transfer-solidification coupling model were investigated.The results showed that the internal cracks induced by soft reduction exhibited a characteristic of being"coarse in the middle and fine at both ends",and displayed an elliptical arc distribution on the loose side of the strand cross section.The cracks originated within the brittle temperature range and propagated inward to the liquid impenetrable temperature and outward to the zero ductility temperature or below.The control strategy for enhancing the internal quality of the 45 steel strand through soft reduction is to adjust the casting speed or the reduction zone appropriately,ensuring that the central solid fraction of the reduction zone falls within the range of 0.33-0.99.At this point,a reasonable reduction amount is allocated to eliminate the center shrinkage cavities and center segregation,even if it results in minor reduction-induced cracks.展开更多
In order to control the CaO-Al;O;-SiO;-MgO system inclusions in 50 CrVA spring steel in a lower melting temperature region,high temperature equilibrium experiments between steel and slag were performed in the laborato...In order to control the CaO-Al;O;-SiO;-MgO system inclusions in 50 CrVA spring steel in a lower melting temperature region,high temperature equilibrium experiments between steel and slag were performed in the laboratory,under the conditions of the initial slag basicity within 3-7and the content of Al;O;between 18-35mass%,to investigate the formation and evolution of this type of inclusion.The results indicate that the total oxygen content in the steel decreases with the increase of slag basicity and the decrease of Al;O;content in slags,and CaO-Al;O;-SiO2-MgO inclusions tend to deviate from the low melting point region with the increase of Al;O;content in slags.The most favorable composition for the refining slag is composed of 51-56mass% CaO,9-13mass% SiO;,20-25mass% Al;O;and 6mass% MgO.In this case,the inclusions in 50 CrVA spring steel are mostly in the low melting point regions,in which their plasticities are expected to improve during steel rolling.The MgO-based inclusions were observed in the steel matrix and the formation mechanism was theoretically and schematically revealed.It is also found that adding around 11mass% of MgO into the refining slags is beneficial to reducing the refractory corrosion.Further work should be carried out focusing on the evolution rates of MgO-based inclusions.展开更多
The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models. A two-dimensiona...The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models. A two-dimensional thermo-elasto-visco-plastic finite element model was developed to predict the mould gap evolution, temperature profiles and deformation behavior of the solidified shell in the mould region. Then, a three-dimensional model was adopted to calculate the shell growth, tempera- ture history and the development of stresses and strains of the shell in the following secondary cooling zones. Finally, another three-dimensional model was used to analyze the stress distributions in the straightening region, The results showed that the off-corner cracks in the shell originated from the mould owing to the tensile strain developed in the crack sensitive regions of the solidification front, and they could be driven deeper by the possible severe surface temperature rebound and the extensive tensile stress in the secondary cooling zone, especially upon the straightening operation of the bloom casting. It is revealed that more homogenous shell temperature and thickness can be obtained through optimization of mould corner radius, casting speed and secondary cooling scheme, which help to decrease stress and strain concentration and therefore prevent the initiation of the cracks.展开更多
To evaluate the effect of actual cooling rate of liquid steel in the ladle on the metallurgical performances of a tundish, a transient and coupled computational model was developed to reveal the flow fields, temperatu...To evaluate the effect of actual cooling rate of liquid steel in the ladle on the metallurgical performances of a tundish, a transient and coupled computational model was developed to reveal the flow fields, temperature fields, residence time distribution of the molten steel and the inclusion removal efficiency in a typical single-strand tundish with given geometry and process parameters. The results showed that, with the decrease of the ladle stream cooling rate, the temperature difference of bulk flow at the outlet of tundish over a normal casting period decreased from 11.3 to 2.6 K, and the dead volume fraction of the tundish decreased from 17.58% to 14. 35%, while the inclusion removal efficiency was increased especially for the inclusions with the diameter less than 50 μm, whose removal ratio could be increased by 20.62%. When the cooling rate was less than 0.3 K · min-1 , however, the variation rates of the three evaluation criterions above declined significantly, which suggested that a critical value existed for the effect of the cooling rate of ladle stream on the tundish performances. The establishment of the critical ladle stream cooling rate should be very important to achieve persistent metallurgical properties of tundish over the whole casting stage, together with the reasonable ladle insulation design.展开更多
Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industria...Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industrial trials to study the effect of a new type of assisted gas nozzles(AGNs)on powder size distribution and amorphous powder yield.The results show that increasing the atomization pressure can effectively improve the gas velocity for the Laval nozzle;however,it will decrease the aspiration pressure,and the optimal atomization pressure is 2.0 MPa.Compared with this,after the application of AGNs with the inlet velocity of 200 m s^(-1),assisted gas jet can increase the velocity of overall droplets in the break-up and solidification area by 40 m s^(-1) and the maximum cooling rate is increased from 1.9×10^(4) to 2.3×10^(4) K s^(-1).The predicted particle behavior is demonstrated by the industrial trails,that is,after the application of AGNs,the median diameter of powders d50 is decreased from 28.42 to 25.56 lm,the sphericity is increased from 0.874 to 0.927,the fraction of amorphous powders is increased from 90.4% to 99.4%,and only the coercivity is increased slightly due to the accumulation of internal stress.It is illustrated that the AGNs can improve the yield of fine amorphous powders,which is beneficial to providing high-performance raw powders for additive manufacturing technology.展开更多
The electromagnetic,flow,heat transfer and inclusions motion model of the channel-type induction heating(IH)tundish was established,and the effect of the channel diameter on the metallurgical behavior of the tundish w...The electromagnetic,flow,heat transfer and inclusions motion model of the channel-type induction heating(IH)tundish was established,and the effect of the channel diameter on the metallurgical behavior of the tundish was studied.The results show that the magnetic field in the channel of the IH tundish tends to concentrate on the surface layer and the side near the coil.As the channel diameter is increased from 100 to 180 mm,the maximum value of magnetic flux density in the channel decreases by 0.125 T,and the maximum value of electromagnetic force decreases by 11.83×10^(5) N m^(-3);however,the off-center distance of magnetic field increases by 9.4 mm,and the Joule heat in the channel decreases by 1004 kW,which leads to the reduction in temperature rising rate of the tundish from 1.41 to 0.59 K min^(-1).When the channel diameter is 100,140 and 180 mm,the maximum velocity at the channel exit before heating is 0.59,0.29 and 0.18 m s^(-1),and after heating for 1800 s,it is 1.52,1.12 and 0.92 m s^(-1),respectively.In addition,the total inclusions escape ratio after heating for 1800 s with a channel diameter of 140 mm can be reduced by 12.39% compared to that before heating,and the maximum difference of escape ratios for each strand is only 4.51% and 5.32% before heating and after heating for 1800 s,respectively.Compared with the channel diameters of 100 and 180 mm,the channel diameter of 140 mm is more favorable to improve the metallurgical effect of the IH tundish.展开更多
文摘Periodic mould level fluctuation (MLF) during slab casting is a bottleneck for upgrading the surface quality and casting speed especially for hypoperitectic (HP) or ultralow carbon steels. The uneven growth of the initially solidified shell is verified to be one of the important inducements to MLF due to related unsteady bulging in the secondary cooling zone. It is shown that the solidification mode of steels and the contraction behavior can be modified through chemical composition optimization within given composition limits, For high strength low alloy (HSLA) steels, the actual peritectic points calculated by Thermo-Calc software may change remarkably with the slight variations of alloying element contents. Accordingly, the narrow limit of chemical composition of HP steels through optimization is proven to be one of the effective factors to control the popular MLF phenomenon during slab casting.
基金supported by the Key R&D Program of Shandong Province,China(Grant No.2022CXGC020308).
文摘Two silicon resins with excellent thermal stability,JH1123 and JH7102,are used as the insulated agents and binders for the gas-atomized FeSiAl powder,and corresponding magnetic powder cores(MPCs)are fabricated.The insulation capability and application prospects of the two silicon resins are evaluated by comparing the magnetic properties of the coated powder and MPCs.The scanning electron microscopy,energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy results show that uniform insulation layers are both formed on the powder surfaces.JH1123 has stronger binding ability,and the JH1123-coated powder exhibits severe agglomeration,with d50(average particle size)approximately twice that of the JH7102-coated powder.Both as-prepared MPCs exhibit outstanding soft magnetic properties.Wherein,the permeability of FeSiAl@JH1123 is up to 74.0,which is 35.5%higher than that of FeSiAl@JH7102 because JH1123 can further improve the density of the MPCs.As for FeSiAl@JH7102,it has better direct current bias and lower core loss of 716.9 mW cm^(−3) at 20 mT and 1000 kHz due to its lower coercivity and greater anti-magnetic saturation ability.A comprehensive comparison shows that FeSiAl@JH1123 is suitable for medium and high frequency applications,while FeSiAl@JH7102 is more suitable for high frequency applications.This indicates that the use of JH1123 and JH7102 silicon resins for binding and insulated coating not only simplifies the preparation process of MPCs,but also enables the controlled production of MPCs for different applications.
基金supported by the Science and Technology Talent Support Project of Hunan province in China(Grant No.2023TJ-Z14).
文摘Obtaining a reasonable mold flow field for casting slabs with different sections is challenging by solely modifying the nozzle structure and continuous casting process. Research was conducted on small-sectioned (1000 mm × 220 mm) and large-sectioned (3250 mm × 220 mm) slab continuous casting molds with a fixed nozzle form (concave bottom nozzle, side port inclination angle of 0°). A three-dimensional electromagnetic model is established to analyze the current frequency, installation position, and rotation angle under the active deceleration mode and acceleration mode. The results indicate that, regardless of the deceleration mode for small-sectioned slabs or the acceleration mode for large-sectioned slabs, the magnetic flux density in the mold decreases with increasing current frequency. However, the maximum electromagnetic force initially increases and then decreases, suggesting that both electromagnetic modes have the same optimal current frequency (3 Hz). The optimal mechanical design parameters for the deceleration mode of electromagnetic variable flow device (EM-VFD) with the small-sectioned slab are as follows: installation position Z = 115 mm and rotation angle of 15°, ensuring that the maximum electromagnetic force is applied to the nozzle jet area. For the acceleration mode of the large-sectioned slab EM-VFD, the optimal mechanical design parameters are as follows: Z = 115 mm and rotation angle of 10°, ensuring that the maximum electromagnetic force is applied to 1/4 and 3/4 areas of the wide face. These findings indicate that the new electromagnetic variable flow device, which can actively adjust the flow rate and angle of the steel even under given working conditions, provides the possibility for reasonable control of the mold’s flow field.
基金This research was funded by National Natural Science Foundation of China(Grant No.51874033)Beijing Natural Science Foundation(Grant No.2182038)to Hai-yan Tang.
文摘The influence of Al content(0.0053,0.0171,and 0.0578 wt.%)on the modification behavior of non-metallic inclusions in 20CrMoVTiB steel treated with rare earth elements was studied through high-temperature experiments and thermodynamic simulation.The results showed that the modification products varied with the Al content in steel under 0.01 wt.%of Ce addition.The formation sequence of typical rare earth inclusions in steel with the increase in Al content was Ce_(2)O_(3)→CeAlO_(3)→CeAl_(11)O_(18),and the final stable products were highly Al content dependent.When the Al content was 0.0053 wt.%,the stable phase in steel was Ce2O3;while the[Al]reached 0.0171 wt.%,the stable phase became CeA1O_(3).As the A1 content reached 0.0578 wt.%,CeAl_(11)O_(18) became the stable phase.As a result,increasing the Al content could inhibit the precipitation of Ce_(2)O_(3) inclusions in steel while promote the formation of CeAIO3 and CeAl_(11)O_(18) inclusions.In addition,both Ca treatment and Ce treatment could effectively refine the size of inclusions in steel by changing their types.However,the feeding amount of Ca wire into molten steel should be appropriately reduced under the condition of adding Ce simultaneously,which is expected to be beneficial for an improved Ce treatment effect.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant No.U1860111).
文摘The propagation form of internal cracks induced by continuous casting soft reduction and the control strategy for enhancing the internal quality of 45 steel through industrial trials and a three-dimensional flow-heat transfer-solidification coupling model were investigated.The results showed that the internal cracks induced by soft reduction exhibited a characteristic of being"coarse in the middle and fine at both ends",and displayed an elliptical arc distribution on the loose side of the strand cross section.The cracks originated within the brittle temperature range and propagated inward to the liquid impenetrable temperature and outward to the zero ductility temperature or below.The control strategy for enhancing the internal quality of the 45 steel strand through soft reduction is to adjust the casting speed or the reduction zone appropriately,ensuring that the central solid fraction of the reduction zone falls within the range of 0.33-0.99.At this point,a reasonable reduction amount is allocated to eliminate the center shrinkage cavities and center segregation,even if it results in minor reduction-induced cracks.
基金support of the funds by the National Key Research and Development Program of China(No.2017YFB0304001)
文摘In order to control the CaO-Al;O;-SiO;-MgO system inclusions in 50 CrVA spring steel in a lower melting temperature region,high temperature equilibrium experiments between steel and slag were performed in the laboratory,under the conditions of the initial slag basicity within 3-7and the content of Al;O;between 18-35mass%,to investigate the formation and evolution of this type of inclusion.The results indicate that the total oxygen content in the steel decreases with the increase of slag basicity and the decrease of Al;O;content in slags,and CaO-Al;O;-SiO2-MgO inclusions tend to deviate from the low melting point region with the increase of Al;O;content in slags.The most favorable composition for the refining slag is composed of 51-56mass% CaO,9-13mass% SiO;,20-25mass% Al;O;and 6mass% MgO.In this case,the inclusions in 50 CrVA spring steel are mostly in the low melting point regions,in which their plasticities are expected to improve during steel rolling.The MgO-based inclusions were observed in the steel matrix and the formation mechanism was theoretically and schematically revealed.It is also found that adding around 11mass% of MgO into the refining slags is beneficial to reducing the refractory corrosion.Further work should be carried out focusing on the evolution rates of MgO-based inclusions.
文摘The formation and propagation of the popular off-corner subsurface cracks in bloom continuous casting were investigated through thermo-mechanical analysis using three coupled thermo-mechanical models. A two-dimensional thermo-elasto-visco-plastic finite element model was developed to predict the mould gap evolution, temperature profiles and deformation behavior of the solidified shell in the mould region. Then, a three-dimensional model was adopted to calculate the shell growth, tempera- ture history and the development of stresses and strains of the shell in the following secondary cooling zones. Finally, another three-dimensional model was used to analyze the stress distributions in the straightening region, The results showed that the off-corner cracks in the shell originated from the mould owing to the tensile strain developed in the crack sensitive regions of the solidification front, and they could be driven deeper by the possible severe surface temperature rebound and the extensive tensile stress in the secondary cooling zone, especially upon the straightening operation of the bloom casting. It is revealed that more homogenous shell temperature and thickness can be obtained through optimization of mould corner radius, casting speed and secondary cooling scheme, which help to decrease stress and strain concentration and therefore prevent the initiation of the cracks.
文摘To evaluate the effect of actual cooling rate of liquid steel in the ladle on the metallurgical performances of a tundish, a transient and coupled computational model was developed to reveal the flow fields, temperature fields, residence time distribution of the molten steel and the inclusion removal efficiency in a typical single-strand tundish with given geometry and process parameters. The results showed that, with the decrease of the ladle stream cooling rate, the temperature difference of bulk flow at the outlet of tundish over a normal casting period decreased from 11.3 to 2.6 K, and the dead volume fraction of the tundish decreased from 17.58% to 14. 35%, while the inclusion removal efficiency was increased especially for the inclusions with the diameter less than 50 μm, whose removal ratio could be increased by 20.62%. When the cooling rate was less than 0.3 K · min-1 , however, the variation rates of the three evaluation criterions above declined significantly, which suggested that a critical value existed for the effect of the cooling rate of ladle stream on the tundish performances. The establishment of the critical ladle stream cooling rate should be very important to achieve persistent metallurgical properties of tundish over the whole casting stage, together with the reasonable ladle insulation design.
基金funded by Key research and development project of Shandong province in China(Grant Number 2018TSCYCX-10).
文摘Based on computational fluid dynamics method,the effect of atomization gas pressure on the atomization efficiency of Laval nozzle was studied,and then a discrete phase model was established and combined with industrial trials to study the effect of a new type of assisted gas nozzles(AGNs)on powder size distribution and amorphous powder yield.The results show that increasing the atomization pressure can effectively improve the gas velocity for the Laval nozzle;however,it will decrease the aspiration pressure,and the optimal atomization pressure is 2.0 MPa.Compared with this,after the application of AGNs with the inlet velocity of 200 m s^(-1),assisted gas jet can increase the velocity of overall droplets in the break-up and solidification area by 40 m s^(-1) and the maximum cooling rate is increased from 1.9×10^(4) to 2.3×10^(4) K s^(-1).The predicted particle behavior is demonstrated by the industrial trails,that is,after the application of AGNs,the median diameter of powders d50 is decreased from 28.42 to 25.56 lm,the sphericity is increased from 0.874 to 0.927,the fraction of amorphous powders is increased from 90.4% to 99.4%,and only the coercivity is increased slightly due to the accumulation of internal stress.It is illustrated that the AGNs can improve the yield of fine amorphous powders,which is beneficial to providing high-performance raw powders for additive manufacturing technology.
基金funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.51874033 and U1860111).
文摘The electromagnetic,flow,heat transfer and inclusions motion model of the channel-type induction heating(IH)tundish was established,and the effect of the channel diameter on the metallurgical behavior of the tundish was studied.The results show that the magnetic field in the channel of the IH tundish tends to concentrate on the surface layer and the side near the coil.As the channel diameter is increased from 100 to 180 mm,the maximum value of magnetic flux density in the channel decreases by 0.125 T,and the maximum value of electromagnetic force decreases by 11.83×10^(5) N m^(-3);however,the off-center distance of magnetic field increases by 9.4 mm,and the Joule heat in the channel decreases by 1004 kW,which leads to the reduction in temperature rising rate of the tundish from 1.41 to 0.59 K min^(-1).When the channel diameter is 100,140 and 180 mm,the maximum velocity at the channel exit before heating is 0.59,0.29 and 0.18 m s^(-1),and after heating for 1800 s,it is 1.52,1.12 and 0.92 m s^(-1),respectively.In addition,the total inclusions escape ratio after heating for 1800 s with a channel diameter of 140 mm can be reduced by 12.39% compared to that before heating,and the maximum difference of escape ratios for each strand is only 4.51% and 5.32% before heating and after heating for 1800 s,respectively.Compared with the channel diameters of 100 and 180 mm,the channel diameter of 140 mm is more favorable to improve the metallurgical effect of the IH tundish.