We have carefully read Dr.Yu and his colleagues'~1review on the mechanism of hamstring muscle strain injury in sprinting.There is no doubt that they have done a lot work in this field.Their views are based on 3 pi...We have carefully read Dr.Yu and his colleagues'~1review on the mechanism of hamstring muscle strain injury in sprinting.There is no doubt that they have done a lot work in this field.Their views are based on 3 pieces of evidence.First,observations from in situ animal models suggest that muscle strain injuries are highly associated with eccentric contractions.Second,the magnitude of muscle strain,rather than the force。展开更多
Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols ...Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.展开更多
Hamstring strain injury is one of most prevalent noncontact injuries in sports that involve high-speed running,such as sprinting,soccer,and rugby.~1In order to optimize prevention strategies and injury rehabilitation,...Hamstring strain injury is one of most prevalent noncontact injuries in sports that involve high-speed running,such as sprinting,soccer,and rugby.~1In order to optimize prevention strategies and injury rehabilitation,studies have been conducted to understand hamstring function during sprinting.^(2–4)However,differences have long existed in the literature as to the cause of hamstring strain injuries.One of the most展开更多
Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to...Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to deploy sensor nodes reasonably and realize effective monitoring of key areas on the basis of monitoring the whole area is an urgent problem to be solved.Additionally,energy is limited in water quality sensor networks.When moving sensor nodes,we should extend the life cycle of the sensor networks as much as possible.In this study,sensor nodes in non-key monitored areas are moved to key areas.First,we used the concentric circle method to determine the mobile sensor nodes and the target locations.Then,we determined the relationship between the mobile sensor nodes and the target locations according to the energy matrix.Finally,we calculated the shortest moving path according to the Floyd algorithm,which realizes the redeployment of the key monitored area.The simulation results showed that,compared with the method of direct movement,the proposed method can effectively reduce the energy consumption and save the network adjustment time based on the effective coverage of key areas.展开更多
Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy co...Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.展开更多
Underwater sensor networks have important application value in the fields of water environment data collection,marine environment monitoring and so on.It has some characteristics such as low available bandwidth,large ...Underwater sensor networks have important application value in the fields of water environment data collection,marine environment monitoring and so on.It has some characteristics such as low available bandwidth,large propagation delays and limited energy,which bring new challenges to the current researches.The research on coverage control of underwater sensor networks is the basis of other related researches.A good sensor node coverage control method can effectively improve the quality of water environment monitoring.Aiming at the problem of high dynamics and uncertainty of monitoring targets,the random events level are divided into serious events and general events.The sensors are set to sense different levels of events and make different responses.Then,an event-driven optimization algorithm for determining sensor target location based on self-organization map is proposed.Aiming at the problem of limited energy of underwater sensor nodes,considering the moving distance,coverage redundancy and residual energy of sensor nodes,an underwater sensor movement control algorithm based on residual energy probability is proposed.The simulation results show that compared with the simple movement algorithm,the proposed algorithm can effectively improve the coverage and life cycle of the sensor networks,and realize real-time monitoring of the water environment.展开更多
Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced...Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced by the unbalanced distribution of node centrality and excessive energy consumption,etc.In order to overcome these problems,a heterogeneous wireless sensor network model with small world characteristics is constructed to balance the centrality and enhance the invulnerability of the network.Also,a new WSN centrality measurement method and a new invulnerability measurement model are proposed based on the WSN data transmission characteristics.Simulation results show that the life cycle and data transmission volume of the network can be improved with a lower network construction cost,and the invulnerability of the network is effectively enhanced.展开更多
Recent experiments[Science Advances 4 eaao4513(2018)]have revealed the evidence of nodal-line superconductivity in half-Heusler superconductors,e.g.,YPt Bi.Theories have suggested the topological nature of such nodal-...Recent experiments[Science Advances 4 eaao4513(2018)]have revealed the evidence of nodal-line superconductivity in half-Heusler superconductors,e.g.,YPt Bi.Theories have suggested the topological nature of such nodal-line superconductivity and proposed the existence of surface Majorana flat bands on the(111)surface of half-Heusler superconductors.Due to the divergent density of states of the surface Majorana flat bands,the surface order parameter and the surface impurity play essential roles in determining the surface properties.We study the effect of the surface order parameter and the surface impurity on the surface Majorana flat bands of half-Heusler superconductors based on the Luttinger model.To be specific,we consider the topological nodal-line superconducting phase induced by the singlet-quintet pairing mixing,classify all the possible translationally invariant order parameters for the surface states according to irreducible representations of C3vpoint group,and demonstrate that any energetically favorable order parameter needs to break the time-reversal symmetry.We further discuss the energy splitting in the energy spectrum of surface Majorana flat bands induced by different order parameters and non-magnetic or magnetic impurities.We propose that the splitting in the energy spectrum can serve as the fingerprint of the pairing symmetry and mean-field order parameters.Our theoretical prediction can be examined in the future scanning tunneling microscopy experiments.展开更多
Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performanc...Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performance anomalies during the flight process. These failures and anomalies may result in mission interruptions, crashes, and even threats to the lives and property of human beings.Thus, the study of flight reliability problems of multirotors is conductive to the development of the drone industry and has theoretical significance and engineering value. This paper proposes a reliable flight performance assessment method of multirotors based on an Interacting Multiple Model Particle Filter(IMMPF) algorithm and health degree as the performance indicator. First, the multirotor is modeled by the Stochastic Hybrid System(SHS) model, and the problem of reliable flight performance assessment is formulated. In order to solve the problem, the IMMPF algorithm is presented to estimate the real-time probability distribution of hybrid state of the established SHS-based multirotor model, since it can decrease estimation errors compared with the standard interacting multiple model algorithm based on extended Kalman filter. Then, the reliable flight performance is assessed with health degree based on the estimation result. Finally, a case study of a multirotor suffering from sensor anomalies is presented to validate the effectiveness of the proposed method.展开更多
Recent years have witnessed tremendous success in the discovery of topological states of matter.Particularly,sophisticated theoretical methods in time-reversal-invariant topological phases have been developed,leading ...Recent years have witnessed tremendous success in the discovery of topological states of matter.Particularly,sophisticated theoretical methods in time-reversal-invariant topological phases have been developed,leading to the comprehensive search of crystal database and the prediction of thousands of topological materials.In contrast,the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound.To overcome this challenge,we propose an alternative approach to realize the quantum anomalous Hall(QAH)effect,a typical example of magnetic topological phase,via engineering two-dimensional(2D)magnetic van der Waals heterojunctions.展开更多
文摘We have carefully read Dr.Yu and his colleagues'~1review on the mechanism of hamstring muscle strain injury in sprinting.There is no doubt that they have done a lot work in this field.Their views are based on 3 pieces of evidence.First,observations from in situ animal models suggest that muscle strain injuries are highly associated with eccentric contractions.Second,the magnitude of muscle strain,rather than the force。
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)Hundred-Thousand-Ten-Thousand Talents Project of Beijing(Grant No.2020A28)+1 种基金National Social Science Fund of China(Grant No.19BGL184)Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01).
文摘Water quality sensor networks are widely used in water resource monitoring.However,due to the fact that the energy of these networks cannot be supplemented in time,it is necessary to study effective routing protocols to extend their lifecycle.To address the problem of limited resources,a routing optimization algorithm based on a small-world network model is proposed.In this paper,a small-world network model is introduced for water quality sensor networks,in which the short average path and large clustering coefficient of the model are used to construct a super link.A short average path can reduce the network’s energy consumption,and a large coefficient can improve its fault-tolerance ability.However,the energy consumption of the relay nodes near the heterogeneous node is too great,and as such the energy threshold and non-uniform clustering are constructed to improve the lifecycle of the network.Simulation results show that,compared with the low-energy adaptive clustering hierarchy routing algorithm and the best sink location clustering heterogeneous network routing algorithm,the proposed improved routing model can effectively enhance the energy-utilization.The lifecycle of the network can be extended and the data transmission amount can be greatly increased.
基金supported partly by the National Natural Science Foundation of China (No. 11372194, 81572213)supported by the Fundamental Research Funds for the Central Universities (No. GK201603128, GK201603129)the Ministry of Education in China Project of Humanities and Social Sciences (No. 16XJC890001)
文摘Hamstring strain injury is one of most prevalent noncontact injuries in sports that involve high-speed running,such as sprinting,soccer,and rugby.~1In order to optimize prevention strategies and injury rehabilitation,studies have been conducted to understand hamstring function during sprinting.^(2–4)However,differences have long existed in the literature as to the cause of hamstring strain injuries.One of the most
基金This research was funded by the National Natural Science Foundation of China(Grant No.61802010)National Social Science Fund of China(Grant No.19BGL184)+1 种基金Beijing Excellent Talent Training Support Project for Young Top-Notch Team(Grant No.2018000026833TD01)and Hundred-Thousand-Ten Thousand Talents Project of Beijing(Grant No.2020A28).
文摘Water quality sensor networks are promising tools for the exploration of oceans.Some key areas need to be monitored effectively.Water quality sensors are deployed randomly or uniformly,however,and understanding how to deploy sensor nodes reasonably and realize effective monitoring of key areas on the basis of monitoring the whole area is an urgent problem to be solved.Additionally,energy is limited in water quality sensor networks.When moving sensor nodes,we should extend the life cycle of the sensor networks as much as possible.In this study,sensor nodes in non-key monitored areas are moved to key areas.First,we used the concentric circle method to determine the mobile sensor nodes and the target locations.Then,we determined the relationship between the mobile sensor nodes and the target locations according to the energy matrix.Finally,we calculated the shortest moving path according to the Floyd algorithm,which realizes the redeployment of the key monitored area.The simulation results showed that,compared with the method of direct movement,the proposed method can effectively reduce the energy consumption and save the network adjustment time based on the effective coverage of key areas.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+1 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01.
文摘Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+1 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01 and Academic Research Projects of Beijing Union University,No.ZK30202103。
文摘Underwater sensor networks have important application value in the fields of water environment data collection,marine environment monitoring and so on.It has some characteristics such as low available bandwidth,large propagation delays and limited energy,which bring new challenges to the current researches.The research on coverage control of underwater sensor networks is the basis of other related researches.A good sensor node coverage control method can effectively improve the quality of water environment monitoring.Aiming at the problem of high dynamics and uncertainty of monitoring targets,the random events level are divided into serious events and general events.The sensors are set to sense different levels of events and make different responses.Then,an event-driven optimization algorithm for determining sensor target location based on self-organization map is proposed.Aiming at the problem of limited energy of underwater sensor nodes,considering the moving distance,coverage redundancy and residual energy of sensor nodes,an underwater sensor movement control algorithm based on residual energy probability is proposed.The simulation results show that compared with the simple movement algorithm,the proposed algorithm can effectively improve the coverage and life cycle of the sensor networks,and realize real-time monitoring of the water environment.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+2 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01Academic Research Projects of Beijing Union University,No.ZK30202103.
文摘Wireless Sensor Network(WSN)is an important part of the Internet of Things(IoT),which are used for information exchange and communication between smart objects.In practical applications,WSN lifecycle can be influenced by the unbalanced distribution of node centrality and excessive energy consumption,etc.In order to overcome these problems,a heterogeneous wireless sensor network model with small world characteristics is constructed to balance the centrality and enhance the invulnerability of the network.Also,a new WSN centrality measurement method and a new invulnerability measurement model are proposed based on the WSN data transmission characteristics.Simulation results show that the life cycle and data transmission volume of the network can be improved with a lower network construction cost,and the invulnerability of the network is effectively enhanced.
基金support of the Office of Naval Research (Grant No. N0001418-1-2793)Kaufman New Initiative research grant KA201898553 of the Pittsburgh Foundationthe U.S. Department of Energy (Grant No. DESC0019064)
文摘Recent experiments[Science Advances 4 eaao4513(2018)]have revealed the evidence of nodal-line superconductivity in half-Heusler superconductors,e.g.,YPt Bi.Theories have suggested the topological nature of such nodal-line superconductivity and proposed the existence of surface Majorana flat bands on the(111)surface of half-Heusler superconductors.Due to the divergent density of states of the surface Majorana flat bands,the surface order parameter and the surface impurity play essential roles in determining the surface properties.We study the effect of the surface order parameter and the surface impurity on the surface Majorana flat bands of half-Heusler superconductors based on the Luttinger model.To be specific,we consider the topological nodal-line superconducting phase induced by the singlet-quintet pairing mixing,classify all the possible translationally invariant order parameters for the surface states according to irreducible representations of C3vpoint group,and demonstrate that any energetically favorable order parameter needs to break the time-reversal symmetry.We further discuss the energy splitting in the energy spectrum of surface Majorana flat bands induced by different order parameters and non-magnetic or magnetic impurities.We propose that the splitting in the energy spectrum can serve as the fingerprint of the pairing symmetry and mean-field order parameters.Our theoretical prediction can be examined in the future scanning tunneling microscopy experiments.
基金co-supported by the Beijing Natural Science Foundation of China (No. 4194074)the National Key R&D Program of China (No. 2017YFC1600605)+1 种基金the Shandong Provincial Natural Science Foundation of China (No. ZR2018BF016)the Beijing Municipal Education Commission Research Program-General Project of China (No. KM201910011011)
文摘Multirotor has been applied to many military and civilian mission scenarios. From the perspective of reliability, it is difficult to ensure that multirotors do not generate hardware and software failures or performance anomalies during the flight process. These failures and anomalies may result in mission interruptions, crashes, and even threats to the lives and property of human beings.Thus, the study of flight reliability problems of multirotors is conductive to the development of the drone industry and has theoretical significance and engineering value. This paper proposes a reliable flight performance assessment method of multirotors based on an Interacting Multiple Model Particle Filter(IMMPF) algorithm and health degree as the performance indicator. First, the multirotor is modeled by the Stochastic Hybrid System(SHS) model, and the problem of reliable flight performance assessment is formulated. In order to solve the problem, the IMMPF algorithm is presented to estimate the real-time probability distribution of hybrid state of the established SHS-based multirotor model, since it can decrease estimation errors compared with the standard interacting multiple model algorithm based on extended Kalman filter. Then, the reliable flight performance is assessed with health degree based on the estimation result. Finally, a case study of a multirotor suffering from sensor anomalies is presented to validate the effectiveness of the proposed method.
基金Department of Energy under Award#DESC0019275 for the design of data-driven discovery pipeline and the first-principles computational workJ.Y.and C.X.L.acknowledge the support of DOE grant(DESC0019064)for the analytical model and symmetry analysis,and the Office of Naval Research(Grant number N00014-18-1-2793)+2 种基金as well as Kaufman New Initiative research grant of the Pittsburgh Foundation.A.J.acknowledges support from U.S.DOE SE-SC0014388S.X.D.thanks the International Partnership Program of Chinese Academy of Sciences,Grant number 112111KYSB20160061It benefitted from the supercomputing resources of the National Energy Research Scientific Computing Center(NERSC),a U.S.Department of Energy Office of Science User Facility operated under Contract number DE-AC02-05CH11231.
文摘Recent years have witnessed tremendous success in the discovery of topological states of matter.Particularly,sophisticated theoretical methods in time-reversal-invariant topological phases have been developed,leading to the comprehensive search of crystal database and the prediction of thousands of topological materials.In contrast,the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound.To overcome this challenge,we propose an alternative approach to realize the quantum anomalous Hall(QAH)effect,a typical example of magnetic topological phase,via engineering two-dimensional(2D)magnetic van der Waals heterojunctions.