To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and control of smart structures,and monitoring of structural integrity.As a model-based method,the inverse...Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and control of smart structures,and monitoring of structural integrity.As a model-based method,the inverse finite element method(iFEM)has been proved to be a valuable shape sensing tool that is suitable for complex structures.In this paper,we propose a novel approach for the shape sensing of thin shell structures with iFEM.Considering the structural form and stress characteristics of thin-walled structure,the error function consists of membrane and bending section strains only which is consistent with the Kirchhoff–Love shell theory.For numerical implementation,a new four-node quadrilateral inverse-shell element,iDKQ4,is developed by utilizing the kinematics of the classical shell theory.This new element includes hierarchical drilling rotation degrees-of-freedom(DOF)which enhance applicability to complex structures.Firstly,the reconstruction performance is examined numerically using a cantilever plate model.Following the validation cases,the applicability of the iDKQ4 element to more complex structures is demonstrated by the analysis of a thin wallpanel.Finally,the deformation of a typical aerospace thin-wall structure(the composite tank)is reconstructed with sparse strain data with the help of iDKQ4 element.展开更多
Objective Glutamine fructose-6-phosphate transaminase 2(GFPT2)is involved in a wide range of biological functions in human cancer.However,few studies have comprehensively analyzed the correlation between GFPT2 and dif...Objective Glutamine fructose-6-phosphate transaminase 2(GFPT2)is involved in a wide range of biological functions in human cancer.However,few studies have comprehensively analyzed the correlation between GFPT2 and different cancer prognoses and tumor microenvironments(TMEs).Methods We evaluated the expression level and prognostic value of GFPT2 using updated public databases and multiple comprehensive bioinformatics analysis methods and explored the relationship between GFPT2 expression and immune infiltration,immune neoantigens,tumor mutational burden(TMB),and microsatellite instability in pan-cancer.Results GFPT2 was highly expressed in five cancers.GFPT2 expression correlates with the prognosis of several cancers from The Cancer Genome Atlas(TCGA)and is significantly associated with stromal and immune scores in pan-cancer.High GFPT2 expression in BLCA,BRCA,and CHOL was positively correlated with the infiltration of immune cells,such as B-cells,CD4+T,CD8+T cells,dendritic cells,neutrophils,and macrophages.Conclusion High GFPT2 expression may modify the outcomes of patients with BLCA,BRCA,or CHOL cancers by increasing immune cell infiltration.These findings may provide insights for further investigation into GFPT2 as a potential target in pan-cancer.展开更多
Species of the ciliate genera Myxophyllum and Conchophthirus are found as endocommensals of terrestrial and freshwater mollusks,respectively.So far,there have been few studies of these genera and morphological data fo...Species of the ciliate genera Myxophyllum and Conchophthirus are found as endocommensals of terrestrial and freshwater mollusks,respectively.So far,there have been few studies of these genera and morphological data for most members are often incomplete.In the present work,two new species,Myxophyllum weishanense sp.nov.and Conchophthirus paracurtus sp.nov.,and a known species,Conchophthirus lamellidens,were isolated from hosts in Lake Weishan Wetland,China.Taxonomic studies indicate that M.weishanense sp.nov.can be recognized mainly by the combination of about 60 somatic kineties on both ventral and dorsal sides and the presence of caudal cilia.Conchophthirus paracurtus sp.nov.differs from congeners in its body shape and size,having a glabrous area on the posterior right side,and having fewer somatic kineties.In addition,differences in their ITS2(Internally Transcribed Spacer 2)secondary structures support the discrimination of the two new species from their highly similar congeners.An improved diagnosis for the poorly known species,C.lamel-lidens is also provided.Phylogenetic analyses reveal that members of the genus Myxophyllum belong to a fully supported clade that is sister to a large,poorly supported clade consisting of Hemispeiridae,Ancistridae,and several lineages of the nonmonophyletic Cyclidiidae.The Myxophyllum clade also includes Protophyra ovicola JQ956552,a possible misidenti-fication.Sequences of the two new Conchophthirus species cluster with other congeners in a fully supported clade that is unrelated to either the‘typical’thigmotrichs or to pleuronematids,thus conflicting with the traditional classification,and may represent an orphan scuticociliate lineage.展开更多
Understanding the host-guest interactions for thermally activated delayed fluorescence(TADF)emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoe...Understanding the host-guest interactions for thermally activated delayed fluorescence(TADF)emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance,whereas technologically manipulating the singlet and triplet excitons by using different kinds of host-guest interactions remains elusive.Here,we report a comprehensive picture that rationalizes host-guest interaction-modulated exciton recombination by using time-resolved spectroscopy.We found that the early-time relaxation is accelerated in polar polymer because dipole-dipole interaction facilitates the stabilization of the 1CT state.However,an opposite trend is observed in longer delay time,and faster decay in the less polar polymer is ascribed to theπ-πinteraction that plays the dominant role in the later stage of the excited state.Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host-guest interactions based on their electronic characteristics.展开更多
In the aquatic microbial food web,scuticociliates are diverse and predominant in almost all kinds of biotopes while extremely confused regarding their taxonomy and systematic relationships within the subclass Scuticoc...In the aquatic microbial food web,scuticociliates are diverse and predominant in almost all kinds of biotopes while extremely confused regarding their taxonomy and systematic relationships within the subclass Scuticociliatia.Here we provide detailed descriptions of two new and one known species,Glauconema sinica sp.nov.,Pleuronema parasetigerum sp.nov.,and Histiobalantium natans viridis,isolated from a freshwater wetland in northern China,along with their molecular phylogeny based on SSU rRNA gene sequences.Our results show:(1)both molecular and morphological data strongly support that the isolated lineage containing the genera Glauconema,Miamiensis,Paramesanophrys,and Anophryoides should be identified as a new taxon at the family level in the order Philasterida;hence,a new family,Glauconematidae fam.nov.,is established.This new family is mainly characterized by the polymorphic life cycle of its members(macrostome and microstome stages);the trophont(or macrostome)has closely spaced membranelles 1–3,whereas in the tomite(or microstome)membranelle 1 is distant from membranelle 2.(2)Phylogenetic analyses using novel data for these species revealed that all three cluster with their congeners,supporting the validity of the genera to which they belong.Molecular information also supports the monophyly of the two main scuticociliate orders Pleuronematida and Philasterida.展开更多
ISG15 is a ubiquitin-like(Ubl) protein attached to substrate proteins by ISG15 conjugating enzymes whose dysregulation is implicated in a multitude of disease processes, but the probing of these enzymes remains to be ...ISG15 is a ubiquitin-like(Ubl) protein attached to substrate proteins by ISG15 conjugating enzymes whose dysregulation is implicated in a multitude of disease processes, but the probing of these enzymes remains to be accomplished. Here, we describe the development of a new activity-based probe ISG15-Dha(dehydroalanine) through protein semi-synthesis. In vitro crosslinking and cell lysate proteomic profiling experiments showed that this probe can sequentially capture ISG15 conjugating enzymes including E1 enzyme UBA7, E2 enzyme UBE2L6, E3 enzyme HERC5, the previously known ISG15 deconjugating enzyme(USP18), as well as some other enzymes(USP5 and USP14) which we additionally confirmed to impart deISGylation activity. Collectively, ISG15-Dha provides a new tool that can simultaneously capture ISG15 conjugating and deconjugating enzymes for biochemical or pharmacological studies.展开更多
E3 ubiquitin ligases catalyze the final step of ubiquitylation,a crucial post-translational modification involved in almost every process in eukaryotic cells.E3 ubiquitin ligases are key regulators of cellular events,...E3 ubiquitin ligases catalyze the final step of ubiquitylation,a crucial post-translational modification involved in almost every process in eukaryotic cells.E3 ubiquitin ligases are key regulators of cellular events,and the investigation into their functions and functioning mechanisms are research areas with great importance.Synthetic or semi-synthetic tools have greatly facilitated the research about the enzyme activity,distribution in different physiological events,and catalytic mechanism of E3 ubiquitin ligase.In this review,we summarize the development of chemical tools for E3 ubiquitin ligases with an emphasis on the synthetic routes.We show the utility of these chemical tools by briefly discussing their applications in biological research.展开更多
The morphological evolution and coarsening kinetics ofγ'precipitates in a Re-containing Ni-based single crystal superalloy were investigated during isothermal aging at 900,950 and 1000℃.After heat treatment,well...The morphological evolution and coarsening kinetics ofγ'precipitates in a Re-containing Ni-based single crystal superalloy were investigated during isothermal aging at 900,950 and 1000℃.After heat treatment,well-defined cuboidalγ'precipitates with low misfit was obtained within the experimental alloy.Then coarsening rate constants and particle size distribution(PSD)ofγ'phases were calculated and specified based on the measured precipitate sizes for va rying periods of aging times from 100 to 2000 h.After aging for 2000 h,γ'precipitates maintained cubical shape at 900℃,while exhibited sphere at 950 and 1000℃.Coarsening models based on diffusion-controlled process with a functional relationship of r^(3) vs.t(classic Lifshitz-Slyozov-Wagner coarsening model)and interface-controlled model with a function of r^(2) vs.t(trans-interface diffusion-controlled coarsening model)were investigated to fit between the experimental results and theoretical analysis.It was found that Re as the slowest diffusing solute in the alloy constituted the rate-limited step for coarsening based on LSW model,while the process limiting coarsening as governed by an interface diffusion process could possibly be related to the Al diffusion through theγ/γ'interface.The PSDs and coarsening exponent were discussed by comparing the experimental data with predictions of LSW and TIDC models.Finally,coarsening mechanism could be divided into four regimes:(i)coarsening by diffusion-controlled;(ii)coarsening by diffusion and interface cocontrolled;(iii)coarsening by interface-controlled;(iv)coarsening by interface-controlled accompanied withγ'coalescence.展开更多
The microstructural evolution in Re-containing Ni-based single crystal superalloys with different Tantalum(Ta)content(2 Ta,5 Ta and 8 Ta in wt%)was investigated.Ta addition significantly affected theγ’precipitate mo...The microstructural evolution in Re-containing Ni-based single crystal superalloys with different Tantalum(Ta)content(2 Ta,5 Ta and 8 Ta in wt%)was investigated.Ta addition significantly affected theγ’precipitate morphology,γ/γ’lattice misfit and microstructural stability during long-term aging.Results showed that the partitioning behaviors of solutes were enhanced by Ta addition,meanwhile,the reversal partitioning behavior of W was triggered which partitioned fromγ’precipitate to matrix.The elemental concentration redistribution caused variations in lattice misfit from positive to negative,the values of lattice misfit were measured to be 0.16%for 2 Ta alloy,then decreased to-0.07%for 5 Ta alloy and negatively increased to-0.23%for 8 Ta alloy.These variations in the lattice misfit were reflected on the transition ofγ’morphology from round-cornered cuboidal shape to cuboidal with sharp corners,accomplished with increasing shape parameter ratioη.Consequently,the optimalγ’shape could be obtained at lattice misfit of approximately 0.3%.Theγ’coarsening investigation at 900℃(up to 2000 h)indicated that Ta addition was beneficial for improving the microstructural stability by reducing the coarsening rate and interfacial energy,accompanied by the enhanced capability of resistingγ’coalescence.By incorporating the calculated interfacial energy,computational modeling,Thermo-Calc and PrecipiCalc,were employed to elucidate theγ’kinetic pathways,the simulation results agreed with experiments,indicating that the model and parameters were reasonable.Additionally,it was found that there was no overlap betweenγ’nucleation and coarsening when theγ/γ’interfacial energy increased to a critical value.展开更多
In this study,hygroscopicity of size-segregated ambient submicron particles in urban Hangzhou was studied from 28th December 2009 to 18th January 2010,using a hygroscopicity-tandem differential mobility analyzer(H-TDM...In this study,hygroscopicity of size-segregated ambient submicron particles in urban Hangzhou was studied from 28th December 2009 to 18th January 2010,using a hygroscopicity-tandem differential mobility analyzer(H-TDMA).The submicron particles in Hangzhou showed a minor hygroscopic growth at 73%relative humidity(RH),and then grew significantly between 77%and 82%RH.Monomodal distribution accounted for 90%for 30 nm particles,17%for 50 nm particles,and less than 7%for particles larger than 50 nm at 82%RH.Deconvolution of the bimodal distribution indicated a less hygroscopic group and a more hygroscopic group,with the fraction of the more hygroscopic group increasing with the initial dry particle size and then remaining almost constant for accumulation mode particles.Our results imply that submicron particles in urban Hangzhou were almost entirely externally mixed,and the hygroscopic properties of ambient particles in urban Hangzhou were mainly a function of their size and chemical composition.展开更多
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金The author received funding for this study from National Key R&D Program of China(2018YFA0702800)National Natural Science Foundation of China(11602048)This study is also supported by National Defense Fundamental Scientific Research Project(XXXX2018204BXXX).
文摘Shape sensing as a crucial component of structural health monitoring plays a vital role in real-time actuation and control of smart structures,and monitoring of structural integrity.As a model-based method,the inverse finite element method(iFEM)has been proved to be a valuable shape sensing tool that is suitable for complex structures.In this paper,we propose a novel approach for the shape sensing of thin shell structures with iFEM.Considering the structural form and stress characteristics of thin-walled structure,the error function consists of membrane and bending section strains only which is consistent with the Kirchhoff–Love shell theory.For numerical implementation,a new four-node quadrilateral inverse-shell element,iDKQ4,is developed by utilizing the kinematics of the classical shell theory.This new element includes hierarchical drilling rotation degrees-of-freedom(DOF)which enhance applicability to complex structures.Firstly,the reconstruction performance is examined numerically using a cantilever plate model.Following the validation cases,the applicability of the iDKQ4 element to more complex structures is demonstrated by the analysis of a thin wallpanel.Finally,the deformation of a typical aerospace thin-wall structure(the composite tank)is reconstructed with sparse strain data with the help of iDKQ4 element.
基金Supported by a grant from the National Natural Science Foundation of China(No.81700256).
文摘Objective Glutamine fructose-6-phosphate transaminase 2(GFPT2)is involved in a wide range of biological functions in human cancer.However,few studies have comprehensively analyzed the correlation between GFPT2 and different cancer prognoses and tumor microenvironments(TMEs).Methods We evaluated the expression level and prognostic value of GFPT2 using updated public databases and multiple comprehensive bioinformatics analysis methods and explored the relationship between GFPT2 expression and immune infiltration,immune neoantigens,tumor mutational burden(TMB),and microsatellite instability in pan-cancer.Results GFPT2 was highly expressed in five cancers.GFPT2 expression correlates with the prognosis of several cancers from The Cancer Genome Atlas(TCGA)and is significantly associated with stromal and immune scores in pan-cancer.High GFPT2 expression in BLCA,BRCA,and CHOL was positively correlated with the infiltration of immune cells,such as B-cells,CD4+T,CD8+T cells,dendritic cells,neutrophils,and macrophages.Conclusion High GFPT2 expression may modify the outcomes of patients with BLCA,BRCA,or CHOL cancers by increasing immune cell infiltration.These findings may provide insights for further investigation into GFPT2 as a potential target in pan-cancer.
基金supported by the National Natu-ral Science Foundation of China(Project Nos.32030015,32100404,32000300,32070432)the Natural Science Foundation of Shandong Province(Project No.ZR2021QC045)the King Saud University,Saudi Arabia(Project No.RSP2024R7).
文摘Species of the ciliate genera Myxophyllum and Conchophthirus are found as endocommensals of terrestrial and freshwater mollusks,respectively.So far,there have been few studies of these genera and morphological data for most members are often incomplete.In the present work,two new species,Myxophyllum weishanense sp.nov.and Conchophthirus paracurtus sp.nov.,and a known species,Conchophthirus lamellidens,were isolated from hosts in Lake Weishan Wetland,China.Taxonomic studies indicate that M.weishanense sp.nov.can be recognized mainly by the combination of about 60 somatic kineties on both ventral and dorsal sides and the presence of caudal cilia.Conchophthirus paracurtus sp.nov.differs from congeners in its body shape and size,having a glabrous area on the posterior right side,and having fewer somatic kineties.In addition,differences in their ITS2(Internally Transcribed Spacer 2)secondary structures support the discrimination of the two new species from their highly similar congeners.An improved diagnosis for the poorly known species,C.lamel-lidens is also provided.Phylogenetic analyses reveal that members of the genus Myxophyllum belong to a fully supported clade that is sister to a large,poorly supported clade consisting of Hemispeiridae,Ancistridae,and several lineages of the nonmonophyletic Cyclidiidae.The Myxophyllum clade also includes Protophyra ovicola JQ956552,a possible misidenti-fication.Sequences of the two new Conchophthirus species cluster with other congeners in a fully supported clade that is unrelated to either the‘typical’thigmotrichs or to pleuronematids,thus conflicting with the traditional classification,and may represent an orphan scuticociliate lineage.
基金Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB0450202Chinese Academy of Sciences,Grant/Award Number:YSBR-007National Natural Science Foundation of China,Grant/Award Numbers:22203085,22273095。
文摘Understanding the host-guest interactions for thermally activated delayed fluorescence(TADF)emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance,whereas technologically manipulating the singlet and triplet excitons by using different kinds of host-guest interactions remains elusive.Here,we report a comprehensive picture that rationalizes host-guest interaction-modulated exciton recombination by using time-resolved spectroscopy.We found that the early-time relaxation is accelerated in polar polymer because dipole-dipole interaction facilitates the stabilization of the 1CT state.However,an opposite trend is observed in longer delay time,and faster decay in the less polar polymer is ascribed to theπ-πinteraction that plays the dominant role in the later stage of the excited state.Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host-guest interactions based on their electronic characteristics.
基金funded by the National Natural Science Foundation of China(Project number:32030015,32100404)the Natural Science Foundation of Shandong Province(Project number:ZR2021QC045)the King Saud University,Saudi Arabia(Project number:RSP2024R7).
文摘In the aquatic microbial food web,scuticociliates are diverse and predominant in almost all kinds of biotopes while extremely confused regarding their taxonomy and systematic relationships within the subclass Scuticociliatia.Here we provide detailed descriptions of two new and one known species,Glauconema sinica sp.nov.,Pleuronema parasetigerum sp.nov.,and Histiobalantium natans viridis,isolated from a freshwater wetland in northern China,along with their molecular phylogeny based on SSU rRNA gene sequences.Our results show:(1)both molecular and morphological data strongly support that the isolated lineage containing the genera Glauconema,Miamiensis,Paramesanophrys,and Anophryoides should be identified as a new taxon at the family level in the order Philasterida;hence,a new family,Glauconematidae fam.nov.,is established.This new family is mainly characterized by the polymorphic life cycle of its members(macrostome and microstome stages);the trophont(or macrostome)has closely spaced membranelles 1–3,whereas in the tomite(or microstome)membranelle 1 is distant from membranelle 2.(2)Phylogenetic analyses using novel data for these species revealed that all three cluster with their congeners,supporting the validity of the genera to which they belong.Molecular information also supports the monophyly of the two main scuticociliate orders Pleuronematida and Philasterida.
基金supported by the National Key Research&Development Program of China(2021YFA1200104,2022YFC3401500)the National Natural Science Foundation of China(21621003,22137005,21971133,22027807,22034004,92253302,22227810)the Tsinghua University Spring Breeze Fund(2020Z99CFY043,2021Z99CFZ002)。
文摘ISG15 is a ubiquitin-like(Ubl) protein attached to substrate proteins by ISG15 conjugating enzymes whose dysregulation is implicated in a multitude of disease processes, but the probing of these enzymes remains to be accomplished. Here, we describe the development of a new activity-based probe ISG15-Dha(dehydroalanine) through protein semi-synthesis. In vitro crosslinking and cell lysate proteomic profiling experiments showed that this probe can sequentially capture ISG15 conjugating enzymes including E1 enzyme UBA7, E2 enzyme UBE2L6, E3 enzyme HERC5, the previously known ISG15 deconjugating enzyme(USP18), as well as some other enzymes(USP5 and USP14) which we additionally confirmed to impart deISGylation activity. Collectively, ISG15-Dha provides a new tool that can simultaneously capture ISG15 conjugating and deconjugating enzymes for biochemical or pharmacological studies.
文摘E3 ubiquitin ligases catalyze the final step of ubiquitylation,a crucial post-translational modification involved in almost every process in eukaryotic cells.E3 ubiquitin ligases are key regulators of cellular events,and the investigation into their functions and functioning mechanisms are research areas with great importance.Synthetic or semi-synthetic tools have greatly facilitated the research about the enzyme activity,distribution in different physiological events,and catalytic mechanism of E3 ubiquitin ligase.In this review,we summarize the development of chemical tools for E3 ubiquitin ligases with an emphasis on the synthetic routes.We show the utility of these chemical tools by briefly discussing their applications in biological research.
基金the financial support by the National Natural Science Foundation of China(51631008)the National Key Research and Development Program of China(No.2016YFB0701400)+1 种基金Natural Science Foundation of Shaanxi Province 2020JM-122the National High Technology Research and Development Program of China(No.2012AA03A511)。
文摘The morphological evolution and coarsening kinetics ofγ'precipitates in a Re-containing Ni-based single crystal superalloy were investigated during isothermal aging at 900,950 and 1000℃.After heat treatment,well-defined cuboidalγ'precipitates with low misfit was obtained within the experimental alloy.Then coarsening rate constants and particle size distribution(PSD)ofγ'phases were calculated and specified based on the measured precipitate sizes for va rying periods of aging times from 100 to 2000 h.After aging for 2000 h,γ'precipitates maintained cubical shape at 900℃,while exhibited sphere at 950 and 1000℃.Coarsening models based on diffusion-controlled process with a functional relationship of r^(3) vs.t(classic Lifshitz-Slyozov-Wagner coarsening model)and interface-controlled model with a function of r^(2) vs.t(trans-interface diffusion-controlled coarsening model)were investigated to fit between the experimental results and theoretical analysis.It was found that Re as the slowest diffusing solute in the alloy constituted the rate-limited step for coarsening based on LSW model,while the process limiting coarsening as governed by an interface diffusion process could possibly be related to the Al diffusion through theγ/γ'interface.The PSDs and coarsening exponent were discussed by comparing the experimental data with predictions of LSW and TIDC models.Finally,coarsening mechanism could be divided into four regimes:(i)coarsening by diffusion-controlled;(ii)coarsening by diffusion and interface cocontrolled;(iii)coarsening by interface-controlled;(iv)coarsening by interface-controlled accompanied withγ'coalescence.
基金the financial support by the National Natural Science Foundation of China(51631008)the National Key Research and Development Program of China(No.2016YFB0701400)Natural Science Foundation of Shaanxi Province2020JM-122。
文摘The microstructural evolution in Re-containing Ni-based single crystal superalloys with different Tantalum(Ta)content(2 Ta,5 Ta and 8 Ta in wt%)was investigated.Ta addition significantly affected theγ’precipitate morphology,γ/γ’lattice misfit and microstructural stability during long-term aging.Results showed that the partitioning behaviors of solutes were enhanced by Ta addition,meanwhile,the reversal partitioning behavior of W was triggered which partitioned fromγ’precipitate to matrix.The elemental concentration redistribution caused variations in lattice misfit from positive to negative,the values of lattice misfit were measured to be 0.16%for 2 Ta alloy,then decreased to-0.07%for 5 Ta alloy and negatively increased to-0.23%for 8 Ta alloy.These variations in the lattice misfit were reflected on the transition ofγ’morphology from round-cornered cuboidal shape to cuboidal with sharp corners,accomplished with increasing shape parameter ratioη.Consequently,the optimalγ’shape could be obtained at lattice misfit of approximately 0.3%.Theγ’coarsening investigation at 900℃(up to 2000 h)indicated that Ta addition was beneficial for improving the microstructural stability by reducing the coarsening rate and interfacial energy,accompanied by the enhanced capability of resistingγ’coalescence.By incorporating the calculated interfacial energy,computational modeling,Thermo-Calc and PrecipiCalc,were employed to elucidate theγ’kinetic pathways,the simulation results agreed with experiments,indicating that the model and parameters were reasonable.Additionally,it was found that there was no overlap betweenγ’nucleation and coarsening when theγ/γ’interfacial energy increased to a critical value.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.21077025,40875073,40975075,20937001)the Science&Technology Commission of Shanghai Municipality(Nos.09160707700,10231203801,10JC1401600).
文摘In this study,hygroscopicity of size-segregated ambient submicron particles in urban Hangzhou was studied from 28th December 2009 to 18th January 2010,using a hygroscopicity-tandem differential mobility analyzer(H-TDMA).The submicron particles in Hangzhou showed a minor hygroscopic growth at 73%relative humidity(RH),and then grew significantly between 77%and 82%RH.Monomodal distribution accounted for 90%for 30 nm particles,17%for 50 nm particles,and less than 7%for particles larger than 50 nm at 82%RH.Deconvolution of the bimodal distribution indicated a less hygroscopic group and a more hygroscopic group,with the fraction of the more hygroscopic group increasing with the initial dry particle size and then remaining almost constant for accumulation mode particles.Our results imply that submicron particles in urban Hangzhou were almost entirely externally mixed,and the hygroscopic properties of ambient particles in urban Hangzhou were mainly a function of their size and chemical composition.