Objective:Candida albicans is a common fungal pathogen that triggers complex host defense mechanisms,including coordinated innate and adaptive immune responses,to neutralize invading fungi effectively.Exploring the im...Objective:Candida albicans is a common fungal pathogen that triggers complex host defense mechanisms,including coordinated innate and adaptive immune responses,to neutralize invading fungi effectively.Exploring the immune microenvironment has the potential to inform the development of therapeutic strategies for fungal infections.Methods:The study analyzed individual immune cell profiles in peripheral blood mononuclear cells from Candida albicans-infected mice and healthy control mice using single-cell transcriptomics,fluorescence quantitative PCR,and Western blotting.We investigated intergroup differences in the dynamics of immune cell subpopulation infiltration,pathway enrichment,and differentiation during Candida albicans infection.Results:Our findings indicate that infiltration of CD4^(+)naive cells,regulatory T(Treg)cells,and Microtubules(MT)-associated cells increased after infection,along with impaired T cell activity.Notably,CD4^(+) T cells and plasma cells were enhanced after infection,suggesting that antibody production is dependent on T cells.In addition,we screened 6 hub genes,transcription factor forkhead box protein 3(Foxp3),cytotoxic T-lymphocyte associated protein 4(CTLA4),Interleukin 2 Receptor Subunit Beta(Il2rb),Cd28,C-C Motif Chemokine Ligand 5(Ccl5),and Cd27 for alterations associated with CD4^(+) T cell differentiation.Conclusions:These results provide a comprehensive immunological landscape of the mechanisms of Candida albicans infection and greatly advance our understanding of adaptive immunity in fungal infections.展开更多
In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winte...In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.展开更多
Objective:To assess the clinical outcomes and toxicities of once daily(QD)simultaneous dose reduction intensity-modulated radiotherapy(SDR-IMRT-QD;SDR-QD)versus conventional QD IMRT(C-QD)and twice daily(BID)IMRT in pa...Objective:To assess the clinical outcomes and toxicities of once daily(QD)simultaneous dose reduction intensity-modulated radiotherapy(SDR-IMRT-QD;SDR-QD)versus conventional QD IMRT(C-QD)and twice daily(BID)IMRT in patients with limited-stage small cell lung cancer(LS-SCLC).Methods:After propensity score matching(PSM),a retrospective analysis involving 300 patients with LS-SCLC treated using SDR-QD,C-QD,or BID was performed from January 1,2014 to December 31,2019.The prescribed irradiation dose in the SDR-QD cohort was 60 Gy/PGTV and 54 Gy/PTV QD.The radiation dose was 60 Gy for both PGTV and PTV QD in the C-QD cohort.The radiation dose was 45 Gy for both PGTV and PTV in the BID cohort.Toxicities,short-term effects,and survival outcomes were recorded.A meta-analysis on the protective effects of pharmaceuticals for cardiac toxicities induced by anti-tumor therapy was performed.Results:The median overall survival time(MST)in the 3 cohorts were 32.7 months(SDR-QD),26.3 months(C-QD),and 33.6 months(BID);the differences between groups were statistically significant.Lower toxicities and doses to organs-at-risk(OARs)occurred in the SDR-QD and BID cohorts.Further,the cardiac dose dosimetric parameter Vheart40 was negatively associated with survival(r=-0.35,P=0.007).A Vheart40 value of 16.5%was recommended as a cut-off point,which yielded 54.7%sensitivity and 85.7%specificity for predicting negative survival outcomes.The meta-analysis indicated that pharmaceuticals significantly reduced the cardiac toxicities induced by chemotherapy,but not radiotherapy.Conclusions:SDR-QD was shown to have similar toxicities and survival compared with BID,but fewer toxicities and better survival than C-QD.In addition,cardiac dose exposure was negatively associated with survival.Thus,16.5%of the cardiac dosimetric parameter Vheart40 is recommended as the cut-off point,and a Vheart40>16.5%predicts poor survival.展开更多
Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning mod...Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborativelywithout sharing rawdata.However,FL is vulnerable to the impact of heterogeneous distributed data,which weakens convergence stability and suboptimal performance of the trained model on local data.This is due to the discarding of the old local model at each round of training,which results in the loss of personalized information in the model critical for maintaining model accuracy and ensuring robustness.In this paper,we propose FedTC,a personalized federated learning method with two classifiers that can retain personalized information in the local model and improve the model’s performance on local data.FedTC divides the model into two parts,namely,the extractor and the classifier,where the classifier is the last layer of the model,and the extractor consists of other layers.The classifier in the local model is always retained to ensure that the personalized information is not lost.After receiving the global model,the local extractor is overwritten by the globalmodel’s extractor,and the classifier of the globalmodel serves as anadditional classifier of the localmodel toguide local training.The FedTCintroduces a two-classifier training strategy to coordinate the two classifiers for local model updates.Experimental results on Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,such as FedAvg,FedPer,and local training,achieving a maximum improvement of 27.95%in model classification test accuracy compared to FedAvg.展开更多
Implementing high-performance silicon(Si)anode in actual processing and application is highly desirable for next-generation,high-energy Li-ion batteries.However,high content of inactive matrix(including conductive age...Implementing high-performance silicon(Si)anode in actual processing and application is highly desirable for next-generation,high-energy Li-ion batteries.However,high content of inactive matrix(including conductive agent and binder)is often indispensable in order to ensure local conductivity and suppress pulverization tendency of Si particles,which thus cause great capacity loss based on the mass of whole electrode.Here,we designed an accordion-structured,high-performance electrode with high Si content up to 95%.Si nanoparticles were well anchored into the interlayer spacings of accordion-like graphene arrays,and free-standing electrode was prepared via a simple filtration process without any binder.Conductive accordion framework ensures strong confinement effect of Si nanoparticles and also provides direct,non-tortuous channels for fast electrochemical reaction kinetics.As a consequence,the accordion Si electrodes exhibit ultrahigh,electrode-based capacities up to 3149 mAh g^(-1)(under Si content of 91%),as well as long-term stability.Also,the accordion electrode can bear extreme condition of over-lithiation and maintains stable in full-cell test.This design provides a significant stride in high Si content toward realistic,high-performance electrodes.展开更多
Glutamine metabolism(GM)plays an important role in tumor growth and proliferation.Skin cutaneous melanoma(SKCM)is a glutamine-dependent cancer.However,the molecular characteristics and action mechanism of GM on SKCM r...Glutamine metabolism(GM)plays an important role in tumor growth and proliferation.Skin cutaneous melanoma(SKCM)is a glutamine-dependent cancer.However,the molecular characteristics and action mechanism of GM on SKCM remain unclear.Therefore,we aimed to explore the effects of GM-related genes on survival,clinicopathological characteristics,and the tumor microenvironment in SKCM.In this study,682 SKCM samples were obtained from the Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)databases.Consensus clustering was used to classify SKCM samples into distinct subtypes based on 41 GM-related genes.Differences in survival,immune infiltration,clinical characteristics,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways as well as differentially expressed genes(DEGs)between subgroups were evaluated.A prognostic model was constructed according to prognostic DEGs.Differential analyses in survival,immune infiltration,tumor microenvironment(TME),tumor mutation burden(TMB),stemness,and drug sensitivity between risk groups were conducted.We identified two distinct GM-related subtypes on SKCM and found that GM-related gene alterations were associated with survival probability,clinical features,biological function,and immune infiltration.Then a risk model based on six DEGs(IL18,SEMA6A,PAEP,TNFRSF17,AIM2,and CXCL10)was constructed and validated for predicting overall survival in SKCM patients.The results showed that the risk score was negatively correlated with CD8+T cells,activated CD4+memory T cells,M1 macrophages,andγδT cells.The group with a low-risk score was accompanied by a better survival rate with higher TME scores and lower stemness index.Moreover,the group with high-and low-risk score had a significant difference with the sensitivity of 75 drugs(p<0.001).Overall,distinct subtypes in SKCM patients based on GM-related genes were identified and the risk model was constructed,which might contribute to prognosis prediction,guide clinical therapy,and develop novel therapeutic strategies.展开更多
One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in o...One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in order to determine quality and yield of sugarcane in various spatial arrangements. Treatments are 180 cm spaced trenches with triple row strips;180 cm spaced trenches with alternate row strips;120 cm spaced trenches with double row strips and 60 cm spaced furrow with single row. Perusal of data revealed that 3.6%, 13.4%, 15%, 15.3% more cane diameter (cm), cane length (cm), stripped cane yield (t·haˉ1</sup>), sugar yield (t·haˉ1</sup>) were obtained from 180 cm spaced trenches with triple row strips as compared to conventional planting method i.e. 60 cm spaced furrows. While the number of millable canes mˉ2</sup>, polarity %, cane juice purity %, cane juice %, commercial cane sugar % and cane sugar recovery % remained non-significant by different planting techniques.展开更多
The meteorological measurement automatic temperature testing system has a defective image. To solve the problem such as noise and insufficient contrast, and put forward the research program for image pretreatment, the...The meteorological measurement automatic temperature testing system has a defective image. To solve the problem such as noise and insufficient contrast, and put forward the research program for image pretreatment, the median filter, histogram equalization and image binarization, methods were used to remove noise and enhance images. Results showed that feature points were clear and accurate after the experiment. This simulation experiment prepared for the follow-up subsequent recognition process.展开更多
To develop the dynamic monitoring algorithm of visual safety distance in highway, by using the highway video traffic monitoring system, the research platform of four kinds of terrain environment in plateau, mountainou...To develop the dynamic monitoring algorithm of visual safety distance in highway, by using the highway video traffic monitoring system, the research platform of four kinds of terrain environment in plateau, mountainous area, plain and coastal area is established. Results show that through the contrast between the sample data and visibility train of thought, based on the theory of mathematical morphology, expressway visibility dynamic monitoring image information system can be established. Based on the theory of the measurement of the basic formula of visibility, the dynamic model of the optimization is established, set up 200 meters distance visual observation target system, research visual range detection algorithm process.展开更多
Lithium-and manganese-rich(LMR)layered cathode materials hold the great promise in designing the next-generation high energy density lithium ion batteries.However,due to the severe surface phase transformation and str...Lithium-and manganese-rich(LMR)layered cathode materials hold the great promise in designing the next-generation high energy density lithium ion batteries.However,due to the severe surface phase transformation and structure collapse,stabilizing LMR to suppress capacity fade has been a critical challenge.Here,a bifunctional strategy that integrates the advantages of surface modification and structural design is proposed to address the above issues.A model compound Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)(MNC)with semi-hollow microsphere structure is synthesized,of which the surface is modified by surface-treated layer and graphene/car-bon nanotube dual layers.The unique structure design enabled high tap density(2.1 g cm^(−3))and bidirectional ion diffusion pathways.The dual surface coatings covalent bonded with MNC via C-O-M linkage greatly improves charge transfer efficiency and mitigates electrode degradation.Owing to the synergistic effect,the obtained MNC cathode is highly conformal with durable structure integrity,exhibiting high volumetric energy density(2234 Wh L^(−1))and predominant capacitive behavior.The assembled full cell,with nanograph-ite as the anode,reveals an energy density of 526.5 Wh kg^(−1),good rate performance(70.3%retention at 20 C)and long cycle life(1000 cycles).The strategy presented in this work may shed light on designing other high-performance energy devices.展开更多
The coverage probability of both the cellular users and the Device-to-Device(D2D) users are analyzed. We assume that the cellular users are able to communication with the Base Station(BS) either by relying on the assi...The coverage probability of both the cellular users and the Device-to-Device(D2D) users are analyzed. We assume that the cellular users are able to communication with the Base Station(BS) either by relying on the assistance of Full-Duplex(FD) mode relays or via direct user-to-BS links with high-enough Signal-to-Interference-plus-Noise-Ratio(SINR). Note that the FD-mode devices are capable of simultaneously operating in two modes,i.e. the D2D mode and the cooperative relay mode,with the sum power consumption at these devices kept constant. The closedform expressions for coverage probability of both tier users are derived. After that,numerical analyses are provided,showing that the coverage probability of the both the cellular and the D2D users can be substantially influenced by a variety of parameters,including the power allocation factor of the relays,the density of users,and the self-interference imposed on the FD mode relays,etc. Furthermore,in the D2D enabled networks,it is shown that the FD relay aided transmission is beneficial to enhancing the coverage probability of the cellular users if the target SINR is lower than 5 d B.展开更多
Objective:To explore whether the traditional Chinese medicine(TCM)Bu Jing Yi Shi Tablets alters the expression of scleral TGF-b1 and Smad3 in guinea pigs with formdeprivation myopia(FDM).Methods:Sixty-five guinea pigs...Objective:To explore whether the traditional Chinese medicine(TCM)Bu Jing Yi Shi Tablets alters the expression of scleral TGF-b1 and Smad3 in guinea pigs with formdeprivation myopia(FDM).Methods:Sixty-five guinea pigs were randomly divided into control,model,low-,medium-,and high-dose treatment groups.Except for the control group,FDM was induced by covering the right eye of each animal with opaque latex.The treatment groups were gavaged with different suspension concentrations of Bu Jing Yi Shi Tablets.Refraction and axial length were performed before and after myopia induction.At the end of the experiment,all right eyes were extracted,and scleral sections were prepared for staining and TGF-b1 and Smad3 immunohistochemistry.Scleral thickness and area,the scleral fibroblast quantity,and scleral TGFb1 and Smad3 expressions were measured.Results:The 5 FDM groups had the same initial axial length and diopter,the final diopter and axial length of the model group were significantly increased compared with the control group and treatment groups(P<.01).The axial length of each treatment group decreased as the dose decreased compared with the model group(P<.01);the total scleral area(P<.05 e.01)and the number of scleral fibroblasts(P<.01)in the model group were significantly lower than the treatment groups.Both the TGF-b1 and Smad3 integral optical densities in the model group were significantly lower than the control and medium-and high-dose treatment groups(P<.01).TGF-b1 and Smad3 mRNAs in the model group were decreased compared with the control group,but increased in expression after treatment.展开更多
Eucommia ulmoides‘Hongye’is a new ornamental variety of E.ulmoides with excellent red or purple foliage.We found that E.ulmoides‘Hongye’exhibited a gradual change from green to red colour under light conditions.Ho...Eucommia ulmoides‘Hongye’is a new ornamental variety of E.ulmoides with excellent red or purple foliage.We found that E.ulmoides‘Hongye’exhibited a gradual change from green to red colour under light conditions.However,the colouring mechanism in the leaves of E.ulmoides‘Hongye’remains unclear.In this study,we compared the pigment content and leaf colour index of E.ulmoides‘Hongye’at five stages with those of E.ulmoides‘Xiaoye’,which was used as the control variety.The transcriptome sequencing data of the first-period(H1,green)and fifth-period(H5,red)leaves were also analysed and compared.The corresponding gene regulation in anthocyanin-related metabolic pathways was then analysed.Physiological results indicated that the contents of flavonoids and anthocyanins in red leaves(H5)were significantly higher than those in green leaves(H1),whereas the chlorophyll content in red leaves(H5)was lower than that in green leaves(H1).Moreover,the carotenoid content did not significantly differ between the two varieties.A transcriptome analysis identified 4240 differentially expressed genes(DEGs),and 20 of these genes were found to be involved in flavonoid and anthocyanin biosynthesis pathways.The results provide a reference for further study of the leaf colouration mechanism in E.ulmoides.展开更多
Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteri...Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.展开更多
Multifunctional materials are powerful tools to support the advancement of energy conversion devices.Materials with prominent electromagnetic and electrochemical properties can realize the conversion of electromagneti...Multifunctional materials are powerful tools to support the advancement of energy conversion devices.Materials with prominent electromagnetic and electrochemical properties can realize the conversion of electromagnetic energy and solve the subsequent storage issues.Herein,an electrospinning-thermal reduction method is employed to construct ultrafine nickel nanoparticle modified porous SiO_(2)/C(Ni-SiO_(2)/C)hollow nanofibers as promising materials for applications in both electromagnetic wave absorption(EMA)and lithium-ion storage.Impressively,when used as an EMA material,the reflection loss(RL)of Ni-SiO_(2)/C can reach−47.8 dB at 15.8 GHz with a matching thickness of 2.2 mm.Its excellent microwave absorption performance can be attributed to the enhanced conduction loss,polarization relaxation,synergistic magnetic loss,and preferred impedance matching,which result from multi-component magnetic/dielectric synergy and the unique interconnected multidimensional hollow structure.Furthermore,the electronic conductivity and electrochemical activity of the samples are significantly enhanced due to the uniform distribution of ultrafine Ni nanoparticles in the amorphous SiO_(2)/C matrix.Meanwhile,the hierarchical hollow porous structure provides sufficient free space for volume change during lithiation/delithiation cycles.Accordingly,the Ni-SiO_(2)/C nanocomposite exhibits a high reversible capacity of 917.6 mAh·g^(−1)at 0.1 A·g^(−1).At a high current density of 2 A·g^(−1),a capacity of 563.9 mAh·g^(−1)can be maintained after 300 cycles.An energy conversion-storage device is designed to store waste electromagnetic energy in the form of useful electrical energy.This work inspires the development of high-performance bifunctional materials.展开更多
Heart failure(HF)is a clinical hallmark of cardiovascular syndrome leading to substantial morbidity,repeated hospitalization,and enormous healthcare expenditure.As elderly populations continue to increase,biomarker-gu...Heart failure(HF)is a clinical hallmark of cardiovascular syndrome leading to substantial morbidity,repeated hospitalization,and enormous healthcare expenditure.As elderly populations continue to increase,biomarker-guided diagnosis and treatment for age-related cardiac decline have become essential.Accumulating evidence demonstrates that N-terminal proBNP(NT-proBNP)can provide a unique window into the diagnosis and risk stratification with HF.Herein,a simple yet robust aptasensor is developed for on-site recognizing the NT-proBNP by its targeting aptamer,thus achieving the accurate diagnosis of HF.This aptasensing system is prepared by absorbing the fluorophore-labeled aptamer strand onto the graphene oxide(GO),leading to efficient quenching without possible off-site signal leakage.The aptamer strand can specifically identify target NT-proBNP molecules via a versatile conformational transformation,resulting in the desorption of the aptamer-NTproBNP complexes from GO and re-generation fluorescence signal,thus allowing sensitive detection of NT-proBNP in 37 clinical blood samples.Taking advantage of the high specificity of aptamer-guaranteed recognitions of NT-proBNP,this aptasensor system readily achieves better diagnostic performance for HF than commercially adopted chemiluminescence immunoassay(Siemens,CLIA)in hospitals in terms of accuracy(89.2%vs 83.8%),specificity(89.5%vs 84.2%),and positive predictive value(88.9%vs 83.3%).This work provides a stable option for the diagnosis and treatment of elderly HF-related diseases inclinics.展开更多
Flexible solid-state cooling devices with high efficiency are attracted to ferroelectric polymers with excellent negative electrocaloric(EC)effects.It is challenging to obtain a large negative EC effect in ferroelectr...Flexible solid-state cooling devices with high efficiency are attracted to ferroelectric polymers with excellent negative electrocaloric(EC)effects.It is challenging to obtain a large negative EC effect in ferroelectric polymers due to the lack of tunable techniques.A giant negative EC response was obtained in the poly(vinylidene fluoride-trifluoroethylene)copolymers(P(VDF-TrFE),70/30,in mole ratio)irra-diated with high-energy X-ray.The irradiated P(VDF-TrFE)films showed an adiabatic temperature change of-13.5 K at 40 MV/m under a dose of 5 Mrad(1 Mrad=10^(4) J/kg)obtained by the indirect method.This significant negative EC effect is attributed to the enhancement of crystalline due to the entry of polymer molecules into the amorphous to crystalline structure and the reduction of heat ca-pacity due to the increase of crosslinking.In addition,X-ray irradiation improves the dielectric coefficient from 15 to 22.This research indicates that irradiation can modify the negative EC properties of ferro-electric polymers for solid-state cooling.展开更多
基金supported by National Key Research and Development Program of China(2021YFC2301405)Chongqing Talent Program(No.CQYC202003220).
文摘Objective:Candida albicans is a common fungal pathogen that triggers complex host defense mechanisms,including coordinated innate and adaptive immune responses,to neutralize invading fungi effectively.Exploring the immune microenvironment has the potential to inform the development of therapeutic strategies for fungal infections.Methods:The study analyzed individual immune cell profiles in peripheral blood mononuclear cells from Candida albicans-infected mice and healthy control mice using single-cell transcriptomics,fluorescence quantitative PCR,and Western blotting.We investigated intergroup differences in the dynamics of immune cell subpopulation infiltration,pathway enrichment,and differentiation during Candida albicans infection.Results:Our findings indicate that infiltration of CD4^(+)naive cells,regulatory T(Treg)cells,and Microtubules(MT)-associated cells increased after infection,along with impaired T cell activity.Notably,CD4^(+) T cells and plasma cells were enhanced after infection,suggesting that antibody production is dependent on T cells.In addition,we screened 6 hub genes,transcription factor forkhead box protein 3(Foxp3),cytotoxic T-lymphocyte associated protein 4(CTLA4),Interleukin 2 Receptor Subunit Beta(Il2rb),Cd28,C-C Motif Chemokine Ligand 5(Ccl5),and Cd27 for alterations associated with CD4^(+) T cell differentiation.Conclusions:These results provide a comprehensive immunological landscape of the mechanisms of Candida albicans infection and greatly advance our understanding of adaptive immunity in fungal infections.
文摘In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.
基金supported by grants from the China Postdoctoral Science Foundation(Grant No.2022M712387)。
文摘Objective:To assess the clinical outcomes and toxicities of once daily(QD)simultaneous dose reduction intensity-modulated radiotherapy(SDR-IMRT-QD;SDR-QD)versus conventional QD IMRT(C-QD)and twice daily(BID)IMRT in patients with limited-stage small cell lung cancer(LS-SCLC).Methods:After propensity score matching(PSM),a retrospective analysis involving 300 patients with LS-SCLC treated using SDR-QD,C-QD,or BID was performed from January 1,2014 to December 31,2019.The prescribed irradiation dose in the SDR-QD cohort was 60 Gy/PGTV and 54 Gy/PTV QD.The radiation dose was 60 Gy for both PGTV and PTV QD in the C-QD cohort.The radiation dose was 45 Gy for both PGTV and PTV in the BID cohort.Toxicities,short-term effects,and survival outcomes were recorded.A meta-analysis on the protective effects of pharmaceuticals for cardiac toxicities induced by anti-tumor therapy was performed.Results:The median overall survival time(MST)in the 3 cohorts were 32.7 months(SDR-QD),26.3 months(C-QD),and 33.6 months(BID);the differences between groups were statistically significant.Lower toxicities and doses to organs-at-risk(OARs)occurred in the SDR-QD and BID cohorts.Further,the cardiac dose dosimetric parameter Vheart40 was negatively associated with survival(r=-0.35,P=0.007).A Vheart40 value of 16.5%was recommended as a cut-off point,which yielded 54.7%sensitivity and 85.7%specificity for predicting negative survival outcomes.The meta-analysis indicated that pharmaceuticals significantly reduced the cardiac toxicities induced by chemotherapy,but not radiotherapy.Conclusions:SDR-QD was shown to have similar toxicities and survival compared with BID,but fewer toxicities and better survival than C-QD.In addition,cardiac dose exposure was negatively associated with survival.Thus,16.5%of the cardiac dosimetric parameter Vheart40 is recommended as the cut-off point,and a Vheart40>16.5%predicts poor survival.
基金funded by Shenzhen Basic Research(Key Project)(No.JCYJ20200109113405927)Shenzhen Stable Supporting Program(General Project)(No.GXWD20201230155427003-20200821160539001)+1 种基金Guangdong Provincial Key Laboratory of Novel Security Intelligence Technologies(2022B1212010005)Peng Cheng Laboratory Project(Grant No.PCL2021A02),Ministry of Education’s Collaborative Education Project with Industry Cooperation(No.22077141140831).
文摘Centralized training of deep learning models poses privacy risks that hinder their deployment.Federated learning(FL)has emerged as a solution to address these risks,allowing multiple clients to train deep learning models collaborativelywithout sharing rawdata.However,FL is vulnerable to the impact of heterogeneous distributed data,which weakens convergence stability and suboptimal performance of the trained model on local data.This is due to the discarding of the old local model at each round of training,which results in the loss of personalized information in the model critical for maintaining model accuracy and ensuring robustness.In this paper,we propose FedTC,a personalized federated learning method with two classifiers that can retain personalized information in the local model and improve the model’s performance on local data.FedTC divides the model into two parts,namely,the extractor and the classifier,where the classifier is the last layer of the model,and the extractor consists of other layers.The classifier in the local model is always retained to ensure that the personalized information is not lost.After receiving the global model,the local extractor is overwritten by the globalmodel’s extractor,and the classifier of the globalmodel serves as anadditional classifier of the localmodel toguide local training.The FedTCintroduces a two-classifier training strategy to coordinate the two classifiers for local model updates.Experimental results on Cifar10 and Cifar100 datasets demonstrate that FedTC performs better on heterogeneous data than current studies,such as FedAvg,FedPer,and local training,achieving a maximum improvement of 27.95%in model classification test accuracy compared to FedAvg.
基金supported by Shaanxi Yanchang Petroleum Co.,Ltd.(18529)Yiwu Research Institute of Fudan University(21557)+1 种基金the National Science Foundation of China(22075048)the Shanghai International Collaboration Research Project(19520713900).
文摘Implementing high-performance silicon(Si)anode in actual processing and application is highly desirable for next-generation,high-energy Li-ion batteries.However,high content of inactive matrix(including conductive agent and binder)is often indispensable in order to ensure local conductivity and suppress pulverization tendency of Si particles,which thus cause great capacity loss based on the mass of whole electrode.Here,we designed an accordion-structured,high-performance electrode with high Si content up to 95%.Si nanoparticles were well anchored into the interlayer spacings of accordion-like graphene arrays,and free-standing electrode was prepared via a simple filtration process without any binder.Conductive accordion framework ensures strong confinement effect of Si nanoparticles and also provides direct,non-tortuous channels for fast electrochemical reaction kinetics.As a consequence,the accordion Si electrodes exhibit ultrahigh,electrode-based capacities up to 3149 mAh g^(-1)(under Si content of 91%),as well as long-term stability.Also,the accordion electrode can bear extreme condition of over-lithiation and maintains stable in full-cell test.This design provides a significant stride in high Si content toward realistic,high-performance electrodes.
基金supported by the National Natural Science Foundation of China(Grant Number[No.82071956])and the Clinical Research Plan of Shanghai Hospital Development Center(Grant Number[No.2020CR4065]).
文摘Glutamine metabolism(GM)plays an important role in tumor growth and proliferation.Skin cutaneous melanoma(SKCM)is a glutamine-dependent cancer.However,the molecular characteristics and action mechanism of GM on SKCM remain unclear.Therefore,we aimed to explore the effects of GM-related genes on survival,clinicopathological characteristics,and the tumor microenvironment in SKCM.In this study,682 SKCM samples were obtained from the Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)databases.Consensus clustering was used to classify SKCM samples into distinct subtypes based on 41 GM-related genes.Differences in survival,immune infiltration,clinical characteristics,and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways as well as differentially expressed genes(DEGs)between subgroups were evaluated.A prognostic model was constructed according to prognostic DEGs.Differential analyses in survival,immune infiltration,tumor microenvironment(TME),tumor mutation burden(TMB),stemness,and drug sensitivity between risk groups were conducted.We identified two distinct GM-related subtypes on SKCM and found that GM-related gene alterations were associated with survival probability,clinical features,biological function,and immune infiltration.Then a risk model based on six DEGs(IL18,SEMA6A,PAEP,TNFRSF17,AIM2,and CXCL10)was constructed and validated for predicting overall survival in SKCM patients.The results showed that the risk score was negatively correlated with CD8+T cells,activated CD4+memory T cells,M1 macrophages,andγδT cells.The group with a low-risk score was accompanied by a better survival rate with higher TME scores and lower stemness index.Moreover,the group with high-and low-risk score had a significant difference with the sensitivity of 75 drugs(p<0.001).Overall,distinct subtypes in SKCM patients based on GM-related genes were identified and the risk model was constructed,which might contribute to prognosis prediction,guide clinical therapy,and develop novel therapeutic strategies.
文摘One of the main reasons behind reduced cane yield is pathetic method of planting. Planting method and row spacing are the most important yield contributing factors in sugarcane. A field experiment was carried out in order to determine quality and yield of sugarcane in various spatial arrangements. Treatments are 180 cm spaced trenches with triple row strips;180 cm spaced trenches with alternate row strips;120 cm spaced trenches with double row strips and 60 cm spaced furrow with single row. Perusal of data revealed that 3.6%, 13.4%, 15%, 15.3% more cane diameter (cm), cane length (cm), stripped cane yield (t·haˉ1</sup>), sugar yield (t·haˉ1</sup>) were obtained from 180 cm spaced trenches with triple row strips as compared to conventional planting method i.e. 60 cm spaced furrows. While the number of millable canes mˉ2</sup>, polarity %, cane juice purity %, cane juice %, commercial cane sugar % and cane sugar recovery % remained non-significant by different planting techniques.
文摘The meteorological measurement automatic temperature testing system has a defective image. To solve the problem such as noise and insufficient contrast, and put forward the research program for image pretreatment, the median filter, histogram equalization and image binarization, methods were used to remove noise and enhance images. Results showed that feature points were clear and accurate after the experiment. This simulation experiment prepared for the follow-up subsequent recognition process.
文摘To develop the dynamic monitoring algorithm of visual safety distance in highway, by using the highway video traffic monitoring system, the research platform of four kinds of terrain environment in plateau, mountainous area, plain and coastal area is established. Results show that through the contrast between the sample data and visibility train of thought, based on the theory of mathematical morphology, expressway visibility dynamic monitoring image information system can be established. Based on the theory of the measurement of the basic formula of visibility, the dynamic model of the optimization is established, set up 200 meters distance visual observation target system, research visual range detection algorithm process.
基金The authors greatly appreciate the financial support from the National Science Foundation of China(22075048,51173027,21875141)Beijing National Laboratory for Condensed Matter Physics,Shanghai International Collaboration Research Project(19520713900).
文摘Lithium-and manganese-rich(LMR)layered cathode materials hold the great promise in designing the next-generation high energy density lithium ion batteries.However,due to the severe surface phase transformation and structure collapse,stabilizing LMR to suppress capacity fade has been a critical challenge.Here,a bifunctional strategy that integrates the advantages of surface modification and structural design is proposed to address the above issues.A model compound Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_(2)(MNC)with semi-hollow microsphere structure is synthesized,of which the surface is modified by surface-treated layer and graphene/car-bon nanotube dual layers.The unique structure design enabled high tap density(2.1 g cm^(−3))and bidirectional ion diffusion pathways.The dual surface coatings covalent bonded with MNC via C-O-M linkage greatly improves charge transfer efficiency and mitigates electrode degradation.Owing to the synergistic effect,the obtained MNC cathode is highly conformal with durable structure integrity,exhibiting high volumetric energy density(2234 Wh L^(−1))and predominant capacitive behavior.The assembled full cell,with nanograph-ite as the anode,reveals an energy density of 526.5 Wh kg^(−1),good rate performance(70.3%retention at 20 C)and long cycle life(1000 cycles).The strategy presented in this work may shed light on designing other high-performance energy devices.
基金supported by Key Project of the National Natural Science Foundation of China (Grant No.61431001)National Natural Science Foundation of China (Grant Nos.61501182,U1501253,61377024)+3 种基金Research Foundation of Education Department of Hunan Province (Grant No.15C0558)Startup Foundation for Doctors of Hunan University of Science and Technology (Grant No.E51539)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education (Guilin University of Electronic Technology)Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘The coverage probability of both the cellular users and the Device-to-Device(D2D) users are analyzed. We assume that the cellular users are able to communication with the Base Station(BS) either by relying on the assistance of Full-Duplex(FD) mode relays or via direct user-to-BS links with high-enough Signal-to-Interference-plus-Noise-Ratio(SINR). Note that the FD-mode devices are capable of simultaneously operating in two modes,i.e. the D2D mode and the cooperative relay mode,with the sum power consumption at these devices kept constant. The closedform expressions for coverage probability of both tier users are derived. After that,numerical analyses are provided,showing that the coverage probability of the both the cellular and the D2D users can be substantially influenced by a variety of parameters,including the power allocation factor of the relays,the density of users,and the self-interference imposed on the FD mode relays,etc. Furthermore,in the D2D enabled networks,it is shown that the FD relay aided transmission is beneficial to enhancing the coverage probability of the cellular users if the target SINR is lower than 5 d B.
基金the Scientific Research Foundation of Sichuan Provincial Education Department(11ZA065:Scleral TGF-b1 expression in guinea pigs with form-deprivation myopia is altered in response to invigoration spleen and elimination blood stasis)the Department of Public Health Foundation,Sichuan Province(110527:Study on FDM guinea pig scleral fibroblasts TGFb1/Smad3 signaling pathway)the Science and Technology Development Foundation of the Teaching Hospital of Chengdu University of TCM(2012-D-YY-12:Research on FDM:guinea pig retinal function is altered in response to nourishing Xu and removing blood stasis).
文摘Objective:To explore whether the traditional Chinese medicine(TCM)Bu Jing Yi Shi Tablets alters the expression of scleral TGF-b1 and Smad3 in guinea pigs with formdeprivation myopia(FDM).Methods:Sixty-five guinea pigs were randomly divided into control,model,low-,medium-,and high-dose treatment groups.Except for the control group,FDM was induced by covering the right eye of each animal with opaque latex.The treatment groups were gavaged with different suspension concentrations of Bu Jing Yi Shi Tablets.Refraction and axial length were performed before and after myopia induction.At the end of the experiment,all right eyes were extracted,and scleral sections were prepared for staining and TGF-b1 and Smad3 immunohistochemistry.Scleral thickness and area,the scleral fibroblast quantity,and scleral TGFb1 and Smad3 expressions were measured.Results:The 5 FDM groups had the same initial axial length and diopter,the final diopter and axial length of the model group were significantly increased compared with the control group and treatment groups(P<.01).The axial length of each treatment group decreased as the dose decreased compared with the model group(P<.01);the total scleral area(P<.05 e.01)and the number of scleral fibroblasts(P<.01)in the model group were significantly lower than the treatment groups.Both the TGF-b1 and Smad3 integral optical densities in the model group were significantly lower than the control and medium-and high-dose treatment groups(P<.01).TGF-b1 and Smad3 mRNAs in the model group were decreased compared with the control group,but increased in expression after treatment.
基金Natural Science Foundation of Henan Province of China(202300410554)Key R&D and Promotion Project of Henan Province(Science and Technology Research)(192102110169,202102110229)].
文摘Eucommia ulmoides‘Hongye’is a new ornamental variety of E.ulmoides with excellent red or purple foliage.We found that E.ulmoides‘Hongye’exhibited a gradual change from green to red colour under light conditions.However,the colouring mechanism in the leaves of E.ulmoides‘Hongye’remains unclear.In this study,we compared the pigment content and leaf colour index of E.ulmoides‘Hongye’at five stages with those of E.ulmoides‘Xiaoye’,which was used as the control variety.The transcriptome sequencing data of the first-period(H1,green)and fifth-period(H5,red)leaves were also analysed and compared.The corresponding gene regulation in anthocyanin-related metabolic pathways was then analysed.Physiological results indicated that the contents of flavonoids and anthocyanins in red leaves(H5)were significantly higher than those in green leaves(H1),whereas the chlorophyll content in red leaves(H5)was lower than that in green leaves(H1).Moreover,the carotenoid content did not significantly differ between the two varieties.A transcriptome analysis identified 4240 differentially expressed genes(DEGs),and 20 of these genes were found to be involved in flavonoid and anthocyanin biosynthesis pathways.The results provide a reference for further study of the leaf colouration mechanism in E.ulmoides.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3200401)the National Natural Science Foundation of China(Grant Nos.52379057&52039001)。
文摘Reservoir construction and operation profoundly alter the hydrological,hydrodynamic,and carbon and nitrogen cycling processes of rivers.However,current research still lacks a systematic understanding of the characteristics of greenhouse gas(GHG)emissions from reservoirs in arid/semi-arid regions.This study integrates existing monitoring data to discuss the characteristics of GHG emissions from reservoirs in the Yellow River Basin and illustrate the controlling factors and underlying mechanism of these processes.The results indicate that while CO_(2) emission flux from reservoirs is lower than that from river channels,the emission fluxes of CH_(4) and N_(2)O are 1.9 times and 10 times those from rivers,respectively,indicating that the emission of GHG with stronger radiative effect is significantly enhanced in reservoirs.Compared to the reservoirs in humid climates(e.g.,the Three Gorges Reservoir),reservoirs in the Yellow River Basin exhibit relatively lower emissions of CO_(2) and CH_4 due to lower organic matter concentrations,but significantly higher N_(2)O emissions due to higher nitrogen loads.Monte Carlo simulations for 237 reservoirs in the Yellow River Basin showed that total emission of the three GHGs is 3.05 Tg CO_(2)-eq yr^(-1),accounting for 0.39% of the total emission from global reservoirs and lower than the area percentage of the basin(0.53%).This study has important implications on revealing the GHG emission characteristics and control mechanisms of reservoirs in arid/semi-arid regions.
基金supported by the Scientific Research Foundation for High-Level Talents of West Anhui University(No.WGKQ2022005)the Natural Science Foundation of West Anhui University(No.WXZR202203)+3 种基金the Provincial Natural Science Foundation of Anhui Province(No.2108085MB51)the Scientific Research Project of West Anhui University(WXZR202302)Supporting Plan for Excellent Youth Talents of Colleges(No.gxyqZD2022074)the National Natural Science Foundation of China(Nos.52203348,52373280,and 52273257).
文摘Multifunctional materials are powerful tools to support the advancement of energy conversion devices.Materials with prominent electromagnetic and electrochemical properties can realize the conversion of electromagnetic energy and solve the subsequent storage issues.Herein,an electrospinning-thermal reduction method is employed to construct ultrafine nickel nanoparticle modified porous SiO_(2)/C(Ni-SiO_(2)/C)hollow nanofibers as promising materials for applications in both electromagnetic wave absorption(EMA)and lithium-ion storage.Impressively,when used as an EMA material,the reflection loss(RL)of Ni-SiO_(2)/C can reach−47.8 dB at 15.8 GHz with a matching thickness of 2.2 mm.Its excellent microwave absorption performance can be attributed to the enhanced conduction loss,polarization relaxation,synergistic magnetic loss,and preferred impedance matching,which result from multi-component magnetic/dielectric synergy and the unique interconnected multidimensional hollow structure.Furthermore,the electronic conductivity and electrochemical activity of the samples are significantly enhanced due to the uniform distribution of ultrafine Ni nanoparticles in the amorphous SiO_(2)/C matrix.Meanwhile,the hierarchical hollow porous structure provides sufficient free space for volume change during lithiation/delithiation cycles.Accordingly,the Ni-SiO_(2)/C nanocomposite exhibits a high reversible capacity of 917.6 mAh·g^(−1)at 0.1 A·g^(−1).At a high current density of 2 A·g^(−1),a capacity of 563.9 mAh·g^(−1)can be maintained after 300 cycles.An energy conversion-storage device is designed to store waste electromagnetic energy in the form of useful electrical energy.This work inspires the development of high-performance bifunctional materials.
基金supported by the National Natural Science Foundation of China(81972020 and 22204012)Chongqing Innovation Research Group Project(CXQT21015)+2 种基金Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0113 and CSTB2022NSCQ-MSX0466)Startup Founds of Chongqing Normal University(22XLB010)supported by the Chongqing YouthExpert Studio.
文摘Heart failure(HF)is a clinical hallmark of cardiovascular syndrome leading to substantial morbidity,repeated hospitalization,and enormous healthcare expenditure.As elderly populations continue to increase,biomarker-guided diagnosis and treatment for age-related cardiac decline have become essential.Accumulating evidence demonstrates that N-terminal proBNP(NT-proBNP)can provide a unique window into the diagnosis and risk stratification with HF.Herein,a simple yet robust aptasensor is developed for on-site recognizing the NT-proBNP by its targeting aptamer,thus achieving the accurate diagnosis of HF.This aptasensing system is prepared by absorbing the fluorophore-labeled aptamer strand onto the graphene oxide(GO),leading to efficient quenching without possible off-site signal leakage.The aptamer strand can specifically identify target NT-proBNP molecules via a versatile conformational transformation,resulting in the desorption of the aptamer-NTproBNP complexes from GO and re-generation fluorescence signal,thus allowing sensitive detection of NT-proBNP in 37 clinical blood samples.Taking advantage of the high specificity of aptamer-guaranteed recognitions of NT-proBNP,this aptasensor system readily achieves better diagnostic performance for HF than commercially adopted chemiluminescence immunoassay(Siemens,CLIA)in hospitals in terms of accuracy(89.2%vs 83.8%),specificity(89.5%vs 84.2%),and positive predictive value(88.9%vs 83.3%).This work provides a stable option for the diagnosis and treatment of elderly HF-related diseases inclinics.
基金supported by Guangdong Basic and Applied Basic Research Foundation(2023A1515012638)Shenzhen Natural Science Funds for Distinguished Young Scholar(No.RCJC20210706091949018)+2 种基金Guangdong Provincial Key Laboratory Program(No.2021B1212040001)of the Department of Science and Technology of Guangdong Provincethe National Natural Science Foundation of China(Nos.11864046)the Basic Research Program of Yunnan Province(Nos.202001AT070064)。
文摘Flexible solid-state cooling devices with high efficiency are attracted to ferroelectric polymers with excellent negative electrocaloric(EC)effects.It is challenging to obtain a large negative EC effect in ferroelectric polymers due to the lack of tunable techniques.A giant negative EC response was obtained in the poly(vinylidene fluoride-trifluoroethylene)copolymers(P(VDF-TrFE),70/30,in mole ratio)irra-diated with high-energy X-ray.The irradiated P(VDF-TrFE)films showed an adiabatic temperature change of-13.5 K at 40 MV/m under a dose of 5 Mrad(1 Mrad=10^(4) J/kg)obtained by the indirect method.This significant negative EC effect is attributed to the enhancement of crystalline due to the entry of polymer molecules into the amorphous to crystalline structure and the reduction of heat ca-pacity due to the increase of crosslinking.In addition,X-ray irradiation improves the dielectric coefficient from 15 to 22.This research indicates that irradiation can modify the negative EC properties of ferro-electric polymers for solid-state cooling.