Tuberculosis has become a major public health and social problem threatening human health, and a large proportion of pulmonary tuberculosis patients are associated with tuberculous pleurisy (TP). Therefore, it is of g...Tuberculosis has become a major public health and social problem threatening human health, and a large proportion of pulmonary tuberculosis patients are associated with tuberculous pleurisy (TP). Therefore, it is of great significance to find markers with high specificity and sensitivity for the rapid and accurate diagnosis and differential diagnosis of TP under the severe background of high infectivity and mortality due to the occult nature of TP. The extraction of microRNA (miRNA) from pleural effusion satisfies the characteristics of strong operability. miRNA exists not only in cells, but also in various body fluids and participates in the pathophysiological process of various diseases including infectious diseases. miRNA is a highly specific biomarker in pleural fluid in patients with TP. Therefore, this article provides a review of the research progress of mRNA in tuberculous pleurisy.展开更多
At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heati...At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.展开更多
First-principles calculations were conducted to investigate the structural,electronic,and magnetic properties of single Fe atoms and Fe dimers on Cu_(2)N/Cu(100).Upon adsorption of an Fe atom onto Cu_(2)N/Cu(100),robu...First-principles calculations were conducted to investigate the structural,electronic,and magnetic properties of single Fe atoms and Fe dimers on Cu_(2)N/Cu(100).Upon adsorption of an Fe atom onto Cu_(2)N/Cu(100),robust Fe-N bonds form,resulting in the incorporation of both single Fe atoms and Fe dimers within the surface Cu_(2)N layer.The partial occupancy of Fe-3d orbitals lead to large spin moments on the Fe atoms.Interestingly,both single Fe atoms and Fe dimers exhibit in-plane magnetic anisotropy,with the magnetic anisotropy energy(MAE)of an Fe dimer exceeding twice that of a single Fe atom.This magnetic anisotropy can be attributed to the predominant contribution of the component along the x direction of the spin-orbital coupling Hamiltonian.Additionally,the formation of Fe-Cu dimers may further boost the magnetic anisotropy,as the energy levels of the Fe-3d orbitals are remarkably influenced by the presence of Cu atoms.Our study manifests the significance of uncovering the origin of magnetic anisotropy in engineering the magnetic properties of magnetic nanostructures.展开更多
Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, t...Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation.展开更多
In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,w...In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,which showed an outward shift of the current density profile of lower hybrid current drive(LHCD)in higher plasma density,the core electron temperature(T_(e)(0))is found to affect the LHCD current profile as well.According to equilibrium reconstruction,a significant increase in on-axis safety factor(q0)from 2.05 to 3.41 is observed by careful arrangement of RFCD.Simulations using ray-tracing code GENRAY and Fokker–Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile,revealing the sensitivity of the LHCD current profile to T_(e)(0).The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher T_(e)(0).With a lower T_(e)(0),the LHCD current profile broadens due to off-axis deposition of power density.The sensitivity of the power deposition and current profile of LHCD to T_(e)(0)provides a promising way to effectively optimize current profile via control of the core electron temperature.展开更多
Energetic alpha particle losses with the toroidal field ripple and the Coulomb collision in the CFETR tokamak have been simulated by using the orbit-following code GYCAVA for the steady-state and hybrid scenarios.The ...Energetic alpha particle losses with the toroidal field ripple and the Coulomb collision in the CFETR tokamak have been simulated by using the orbit-following code GYCAVA for the steady-state and hybrid scenarios.The effects of the outer boundary and the ripple amplitude on alpha particle losses have been investigated.The loss fractions and heat loads of alpha particles in the hybrid scenario are much smaller than those in the steady-state scenario for a significant ripple amplitude.Some alpha particles in the plasma core are lost due to the ripple stochastic transport for a large ripple amplitude parameter.The heat loads with the last closed flux surface boundary are different from those with the wall boundary for the CFETR tokamak,which can be explained by typical alpha particle orbits.Discrete heat load spots have been observed in alpha particle loss simulations,which is due to the ripple well loss.The transition of the lost alpha particle behavior from the ripple stochastic diffusion to the ripple well trapping has been identified in our CFETR simulations.The Coulomb collision effect is responsible for this transition.展开更多
The equilibrium reconstruction is important to study the tokamak plasma physical processes.To analyze the contribution of fast ions to the equilibrium,the kinetic equilibria at two time-slices in a typical H-mode disc...The equilibrium reconstruction is important to study the tokamak plasma physical processes.To analyze the contribution of fast ions to the equilibrium,the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics,kinetic diagnostics and TRANSP code.It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region.The fast-ion current contributes mainly in the core region while contributes little to the pedestal current.A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current.It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.展开更多
The lower hybrid current drive is a potential candidate for sustaining plasma current in tokamak steady-state oper-ations,which could be used in China Fusion Engineering Test Reactor(CFETR)with input power up to a few...The lower hybrid current drive is a potential candidate for sustaining plasma current in tokamak steady-state oper-ations,which could be used in China Fusion Engineering Test Reactor(CFETR)with input power up to a few tens of megawatts.Such high input power could trigger the well-known parametric instabilities(PIs)at the plasma edge affect-ing the propagation and absorption of the lower hybrid pump waves.By analytically solving the nonlinear dispersion relation describing PIs,an explicit expression of the PI growth rate is obtained and analyzed in detail.It is found that pressure is the key parameter determining the PI characteristics.Ion sound quasi-mode is the dominant decay channel in the low-pressure regime,while the ion cyclotron quasi-mode(ICQM),as well as its harmonics,becomes dominant in the intermediate regime.In the high-pressure regime,only one mixed channel is found,which is related to Landau damping by free-streaming ions.Analytical expressions of growth rates of these decay channels are also obtained to show the parameter dependence at different pressure limits.The above analytical results are used to estimate the PIs on a typical profile of CFETR,and verified by corresponding numerical calculations.ICQM is found to be the strongest decay channel with a considerable growth rate for CFETR.展开更多
Tritium self-sufficiency in future deuterium–tritium fusion reactors is a crucial challenge.As an engineering test reactor,the China Fusion Engineering Test Reactor requires a burning fraction of 3%for the goal to te...Tritium self-sufficiency in future deuterium–tritium fusion reactors is a crucial challenge.As an engineering test reactor,the China Fusion Engineering Test Reactor requires a burning fraction of 3%for the goal to test the accessibility to the future fusion plant.To self-consistently simulate burning plasmas with profile changes in pellet injection scenarios and to estimate the corresponding burning fraction,a one-dimensional multi-species radial transport model is developed in the BOUT++framework.Several pellet-fueling scenarios are then tested in the model.The results show that the increased fueling depth improves the burning fraction by particle confinement improvement and fusion power increase.Nevertheless,by increasing the depth,the pellet cooling-down may significantly lower the temperature in the core region.Taking the density perturbation into consideration,the reasonable parameters of the fueling scenario in these simulations are estimated as pellet radius r_(p)=3 mm,injection rate=4 Hz,and pellet injection velocity=1000–2000 m s^(-1) without drift or 450 m s^(-1) with high-field-side drift.展开更多
The absorption of neutral beam power and the fast ion stored energy in EAST plasmas with neutral beam injection(NBI)is analyzed to improve the calculation of thermal energy confinement time.The neutral beam power abso...The absorption of neutral beam power and the fast ion stored energy in EAST plasmas with neutral beam injection(NBI)is analyzed to improve the calculation of thermal energy confinement time.The neutral beam power absorption and fast ion stored energy are systematically calculated using the TRANSP code,through the investigation of global parameters including plasma current,line averaged density and beam energy.Results have shown that scaling laws for the NBI absorption coefficient and fast ion energy rate are obtained through statistical analysis.A comparison of the confinement improvement factor H98y2 with these new scaling laws against those assuming fixed coefficients is given.展开更多
African swine fever virus(ASFV)is the only pathogen that causes African swine fever(ASF).The virus has strong viability outside of pigs,easily causing cross-border transmission,and bringing great harm to the pig indus...African swine fever virus(ASFV)is the only pathogen that causes African swine fever(ASF).The virus has strong viability outside of pigs,easily causing cross-border transmission,and bringing great harm to the pig industry.This paper mainly introduced the biological characteristics and transmission methods of ASFV,and provides a certain theoretical basis for preventing ASF.展开更多
High entropy alloys(HEA)are frequently employed as catalysts in electrocatalytic hydrogen evolution.However,the traditional high entropy alloy synthesis methods are time-consuming,energy-intensive,and environmentally ...High entropy alloys(HEA)are frequently employed as catalysts in electrocatalytic hydrogen evolution.However,the traditional high entropy alloy synthesis methods are time-consuming,energy-intensive,and environmentally polluting,which limits their application in the hydrogen evolution reaction(HER).This study leveraged the capabilities of flash Joule heating(FJH)to synthesize carbon-supported high-entropy alloy sulfide nanoparticles(CC-S-HEA)on carbon cloth(CC)with good self-standing properties within 300 ms.The carbon thermal shock generated by the Joule heating could pyrolyze the sulfur source into gas,resulting in numerous pore structures and defects on CC,forming an S-doped carbon substrate(CC-S).Then the S atoms were used to stably anchor the metal atoms on CC-S to form high-density uniformly dispersed HEA particles.The electrochemical test results demonstrated that CC-S-HEA prepared at 60 V flash voltage had HER performance comparable to Pt/C.The density functional theory(DFT)calculation indicated that the S atoms on CC-S accelerated the electron transfer between the carbon substrate and HEA particles.Moreover,the unique electronic structure of CC-S-HEA was beneficial to H*adsorption and promoted catalytic kinetics.The simplicity and versatility of FJH synthesis are of great significance for optimizing the synthesis of HEA and improving the quality of HEA products,which provides a broad application prospect for the synthesis of nanocatalysts with efficient HER performance.展开更多
Psoriasis is a common chronic inflammatory skin disease driven by the aberrant activation of dendritic cells(DCs)and T cells,ultimately leading to increased production of cytokines such as interleukin(IL)-23 and IL-17...Psoriasis is a common chronic inflammatory skin disease driven by the aberrant activation of dendritic cells(DCs)and T cells,ultimately leading to increased production of cytokines such as interleukin(IL)-23 and IL-17A.It is established that the cGAS-STING pathway is essential for psoriatic inflammation,however,the specific role of cGAS-STING signaling in DCs within this context remains unclear.In this study,we demonstrated the upregulation of cGAS-STING signaling in psoriatic lesions by analyzing samples from both clinical patients and imiquimod(IMQ)-treated mice.Using a conditional Sting-knockout transgenic mouse model,we elucidated the impact of cGAS-STING signaling in DCs on the activation of IL-17-and IFN-γ-producing T cells in psoriatic inflammation.Ablation of the Sting hampers DC activation leads to decreased numbers of IL-17-producing T cells and Th1 cells,and thus subsequently attenuates psoriatic inflammation in the IMQ-induced mouse model.Furthermore,we explored the therapeutic potential of the STING inhibitor C-176,which reduces psoriatic inflammation and enhances the anti-IL-17A therapeutic response.Our results underscore the critical role of cGAS-STING signaling in DCs in driving psoriatic inflammation and highlight a promising psoriasis treatment.展开更多
Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate a...Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g^−1 at 0.1 A·g^−1 and 242.5 mAh·g^−1 at 1 A·g^−1 for 2,500 cycles with exceptional rate capability of 5 A·g^−1 with reversible capacities of 201.2 mAh·g^−1. The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.展开更多
Developing suitable electrode materials for electrochemical energy storage devices by biomorph assisted design has become a fascinating topic due to the fantastic properties derived from bio-architectures.Herein,zephy...Developing suitable electrode materials for electrochemical energy storage devices by biomorph assisted design has become a fascinating topic due to the fantastic properties derived from bio-architectures.Herein,zephyranthes-like Co_(2)NiSe_(4)arrays grown on butterfly wings derived three-dimensional(3D)carbon framework(Z-Co_(2)NiSe_(4)/BWC)is fabricated via hydrothermal assembly and further conversion method.Benefiting from its unique structure and multi-components,the obtained Z-Co_(2)NiSe_(4)/BWC electrode for supercapacitor delivers an excellent specific capacitance of 2,280 F·g^(-1)at 1 A·g^(-1).Impressively,the constructed asymmetric supercapacitor using Co_(2)NiSe_(4)/BWC as positive electrode and activated butterfly wings carbon as negative electrode acquires a high energy density of 42.9 Wh·kg^(-1)at a power density of 800 W·kg^(-1)with robust stability of 94.6%capacitance retention at 10 A·g^(-1)after 5,000 cycles.Moreover,the Z-Co_(2)NiSe_(4)/BWC as anode for sodium-ion batteries exhibits a high specific capacity of 568 mAh·g^(-1)at 0.1 A·g^(-1)and high cycling stability(maintaining 80.1%of the second cycle after 100 cycles).The outstanding electrochemical performances are ascribed to that the synergistic effect of bimetallic selenides and N-doped carbon improves electrochemical activities and conductivity.One-dimensional(1D)nanoneedles grown on 3D porous framework increase the exposure of redox-active sites,endow adequate transmission channels of electrons/ions,and guarantee stability of the electrode during charge/discharge processes.This study will shed light on the avenue towards extending such nanohybrids to excellent energy storage applications.展开更多
Mouse embryonic stem cells(mESCs)cycle in and out of a transient 2-cell(2C)-like totipotent state,driven by a com-plex genetic circuit involves both the coding and repetitive sections of the genome.While a vast array ...Mouse embryonic stem cells(mESCs)cycle in and out of a transient 2-cell(2C)-like totipotent state,driven by a com-plex genetic circuit involves both the coding and repetitive sections of the genome.While a vast array of regulators,including the multi-functional protein Rif1,has been reported to influence the switch of fate potential,how they act in concert to achieve this cellular plasticity remains elusive.Here,by modularizing the known totipotency regulatory factors,we identify an unprecedented functional connection between Rif1 and the non-canonical polycomb repres-sive complex PRC1.6.Downregulation of the expression of either Rif1 or PRC1.6 subunits imposes similar impacts on the transcriptome of mESCs.The LacO-LacI induced ectopic colocalization assay detects a specific interaction between Rif1 and Pcgf6,bolstering the intactness of the PRC1.6 complex.Chromatin immunoprecipitation followed by sequencing(ChIP-seq)analysis further reveals that Rif1 is required for the accurate targeting of Pcgf6 to a group of genomic loci encompassing many genes involved in the regulation of the 2C-like state.Depletion of Rif1 or Pcgf6 not only activates 2C genes such as Zscan4 and Zfp352,but also derepresses a group of the endogenous retroviral element MERVL,a key marker for totipotency.Collectively,our findings discover that Rif1 can serve as a novel auxiliary component in the PRC1.6 complex to restrain the genetic circuit underlying totipotent fate potential,shedding new mechanistic insights into its function in regulating the cellular plasticity of embryonic stem cells.展开更多
文摘Tuberculosis has become a major public health and social problem threatening human health, and a large proportion of pulmonary tuberculosis patients are associated with tuberculous pleurisy (TP). Therefore, it is of great significance to find markers with high specificity and sensitivity for the rapid and accurate diagnosis and differential diagnosis of TP under the severe background of high infectivity and mortality due to the occult nature of TP. The extraction of microRNA (miRNA) from pleural effusion satisfies the characteristics of strong operability. miRNA exists not only in cells, but also in various body fluids and participates in the pathophysiological process of various diseases including infectious diseases. miRNA is a highly specific biomarker in pleural fluid in patients with TP. Therefore, this article provides a review of the research progress of mRNA in tuberculous pleurisy.
基金supported by National Natural Science Foundation of China(No.12135015)the Users with Excellence Program of Hefei Science Center,CAS(No.2021HSCUE012)+3 种基金the National Key R&D Program of China(No.2022Y FE03010003)the Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences 2021the Special Funds for Improving Conditions for Scientific Research in National Scientific Institutions 2022the China Scholarship Council。
文摘At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.
基金Project supported by the Program for Science and Technology Innovation Team in Zhejiang Province,China (Grant No.2021R01004)the Start-up Funding of Ningbo UniversityYongjiang Recruitment Project (Grant No.432200942)。
文摘First-principles calculations were conducted to investigate the structural,electronic,and magnetic properties of single Fe atoms and Fe dimers on Cu_(2)N/Cu(100).Upon adsorption of an Fe atom onto Cu_(2)N/Cu(100),robust Fe-N bonds form,resulting in the incorporation of both single Fe atoms and Fe dimers within the surface Cu_(2)N layer.The partial occupancy of Fe-3d orbitals lead to large spin moments on the Fe atoms.Interestingly,both single Fe atoms and Fe dimers exhibit in-plane magnetic anisotropy,with the magnetic anisotropy energy(MAE)of an Fe dimer exceeding twice that of a single Fe atom.This magnetic anisotropy can be attributed to the predominant contribution of the component along the x direction of the spin-orbital coupling Hamiltonian.Additionally,the formation of Fe-Cu dimers may further boost the magnetic anisotropy,as the energy levels of the Fe-3d orbitals are remarkably influenced by the presence of Cu atoms.Our study manifests the significance of uncovering the origin of magnetic anisotropy in engineering the magnetic properties of magnetic nanostructures.
基金the financial support provided by the National Natural Science Foundation of China (21808044)。
文摘Nowadays, oil contamination has become a major reason for water pollution, and presents a global environmental challenge. Although many efforts have been devoted to the fabrication of oil/water separation materials, their practical applications are still hindered by their weak durability, poor chemical tolerance,environmental resistance, and potential negative impact on health and the environment. To overcome these drawbacks, this work offers a facile method to fabricate the eco-friendly and durable oil/water separation membrane fabrics by alkaline hydrolysis and silicon polyurethane coating. The X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy results demonstrate that silicon polyurethane membrane could be coated onto the surface of hydrolyzed polyester fabric and form a micro-/nano-scaled hierarchical structure. Based on this, the modified fabric could have a stable superhydrophobic property with a water contact angle higher than 150°, even after repeated washing and mechanical abrasion 800 times, as well as chemical corrosion. Moreover, the modified fabrics show excellent oil/water separation efficiency of up to 99% for various types of oil–water mixture. Therefore, this durable, eco-friendly and cost-efficient superhydrophobic fabric has great potential in large-scale oil/water separation.
基金supported by the National MCF Energy R&D Program of China (No. 2019YFE0304000)National Natural Science Foundation of China (Nos. 12005262 and 11975274)+3 种基金the Anhui Provincial Natural Science Foundation (No. 2108085J06)the Users with Excellence Program of Hefei Science Center CAS (Nos. 2021HSC-UE018 and 2020HSC-UE011)the External Cooperation Program of Chinese Academy of Sciences (No. 116134KYSB20180035)the Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-2021-04)
文摘In recent EAST experiments,current profile broadening characterized by reduced internal inductance has been achieved by utilizing radio-frequency current drives(RFCD).In contrast to previous density scan experiments,which showed an outward shift of the current density profile of lower hybrid current drive(LHCD)in higher plasma density,the core electron temperature(T_(e)(0))is found to affect the LHCD current profile as well.According to equilibrium reconstruction,a significant increase in on-axis safety factor(q0)from 2.05 to 3.41 is observed by careful arrangement of RFCD.Simulations using ray-tracing code GENRAY and Fokker–Planck code CQL3D have been performed to thoroughly analyze the LHCD current profile,revealing the sensitivity of the LHCD current profile to T_(e)(0).The LHCD current density tends to accumulate in the plasma core with higher current drive efficiency benefiting from higher T_(e)(0).With a lower T_(e)(0),the LHCD current profile broadens due to off-axis deposition of power density.The sensitivity of the power deposition and current profile of LHCD to T_(e)(0)provides a promising way to effectively optimize current profile via control of the core electron temperature.
基金the support from the CFETR teamjointly supported by National Natural Science Foundation of China(Nos.12175034,12005063)+1 种基金the National Key R&D Program of China(No.2019YFE03030001)the Fundamental Research Funds for the Central Universities(No.2232022G-10)。
文摘Energetic alpha particle losses with the toroidal field ripple and the Coulomb collision in the CFETR tokamak have been simulated by using the orbit-following code GYCAVA for the steady-state and hybrid scenarios.The effects of the outer boundary and the ripple amplitude on alpha particle losses have been investigated.The loss fractions and heat loads of alpha particles in the hybrid scenario are much smaller than those in the steady-state scenario for a significant ripple amplitude.Some alpha particles in the plasma core are lost due to the ripple stochastic transport for a large ripple amplitude parameter.The heat loads with the last closed flux surface boundary are different from those with the wall boundary for the CFETR tokamak,which can be explained by typical alpha particle orbits.Discrete heat load spots have been observed in alpha particle loss simulations,which is due to the ripple well loss.The transition of the lost alpha particle behavior from the ripple stochastic diffusion to the ripple well trapping has been identified in our CFETR simulations.The Coulomb collision effect is responsible for this transition.
基金supported by National Key R&D Program of China under Grant No.2017YFE0300400National Natural Science Foundation of China under Grant Nos.11475220,11405218,11575248+1 种基金the National Magnetic Confinement Fusion Science Program of China under Contracts No.2014GB106001sponsored in part by Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No.2016384)
文摘The equilibrium reconstruction is important to study the tokamak plasma physical processes.To analyze the contribution of fast ions to the equilibrium,the kinetic equilibria at two time-slices in a typical H-mode discharge with different auxiliary heatings are reconstructed by using magnetic diagnostics,kinetic diagnostics and TRANSP code.It is found that the fast-ion pressure might be up to one-third of the plasma pressure and the contribution is mainly in the core plasma due to the neutral beam injection power is primarily deposited in the core region.The fast-ion current contributes mainly in the core region while contributes little to the pedestal current.A steep pressure gradient in the pedestal is observed which gives rise to a strong edge current.It is proved that the fast ion effects cannot be ignored and should be considered in the future study of EAST.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2017YFE0300406 and 2019YFE00308050)the National Natural Science Foundation of China(Grant Nos.11975272,12175274,12005258,and 11705236)。
文摘The lower hybrid current drive is a potential candidate for sustaining plasma current in tokamak steady-state oper-ations,which could be used in China Fusion Engineering Test Reactor(CFETR)with input power up to a few tens of megawatts.Such high input power could trigger the well-known parametric instabilities(PIs)at the plasma edge affect-ing the propagation and absorption of the lower hybrid pump waves.By analytically solving the nonlinear dispersion relation describing PIs,an explicit expression of the PI growth rate is obtained and analyzed in detail.It is found that pressure is the key parameter determining the PI characteristics.Ion sound quasi-mode is the dominant decay channel in the low-pressure regime,while the ion cyclotron quasi-mode(ICQM),as well as its harmonics,becomes dominant in the intermediate regime.In the high-pressure regime,only one mixed channel is found,which is related to Landau damping by free-streaming ions.Analytical expressions of growth rates of these decay channels are also obtained to show the parameter dependence at different pressure limits.The above analytical results are used to estimate the PIs on a typical profile of CFETR,and verified by corresponding numerical calculations.ICQM is found to be the strongest decay channel with a considerable growth rate for CFETR.
基金supported by National Natural Science Foundation of China(Nos.11975087 and 41674165)the National Key Research and Development Program of China(Nos.2017YFE0300501 and 2018YFE030310)。
文摘Tritium self-sufficiency in future deuterium–tritium fusion reactors is a crucial challenge.As an engineering test reactor,the China Fusion Engineering Test Reactor requires a burning fraction of 3%for the goal to test the accessibility to the future fusion plant.To self-consistently simulate burning plasmas with profile changes in pellet injection scenarios and to estimate the corresponding burning fraction,a one-dimensional multi-species radial transport model is developed in the BOUT++framework.Several pellet-fueling scenarios are then tested in the model.The results show that the increased fueling depth improves the burning fraction by particle confinement improvement and fusion power increase.Nevertheless,by increasing the depth,the pellet cooling-down may significantly lower the temperature in the core region.Taking the density perturbation into consideration,the reasonable parameters of the fueling scenario in these simulations are estimated as pellet radius r_(p)=3 mm,injection rate=4 Hz,and pellet injection velocity=1000–2000 m s^(-1) without drift or 450 m s^(-1) with high-field-side drift.
基金Numerical computations were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics,Chinese Academy of SciencesThe work is supported by National MCF Energy R&D Program of China(Nos.2018YFE0302100,2017YFE0301100)+1 种基金National Natural Science Foundation of China(Nos.11775262,11975274,11805237,11705239)the National Magnetic Confinement Fusion Science Program of China(No.2015GB102000).
文摘The absorption of neutral beam power and the fast ion stored energy in EAST plasmas with neutral beam injection(NBI)is analyzed to improve the calculation of thermal energy confinement time.The neutral beam power absorption and fast ion stored energy are systematically calculated using the TRANSP code,through the investigation of global parameters including plasma current,line averaged density and beam energy.Results have shown that scaling laws for the NBI absorption coefficient and fast ion energy rate are obtained through statistical analysis.A comparison of the confinement improvement factor H98y2 with these new scaling laws against those assuming fixed coefficients is given.
基金Undergraduate Innovation and Enterpreneurship Training Program of Tianjin Agricultural University(202010061146)。
文摘African swine fever virus(ASFV)is the only pathogen that causes African swine fever(ASF).The virus has strong viability outside of pigs,easily causing cross-border transmission,and bringing great harm to the pig industry.This paper mainly introduced the biological characteristics and transmission methods of ASFV,and provides a certain theoretical basis for preventing ASF.
基金supported by Key Research and Development Project of Xuzhou City(No.KC21287)the National Natural Science Foundation of China(No.51974307).
文摘High entropy alloys(HEA)are frequently employed as catalysts in electrocatalytic hydrogen evolution.However,the traditional high entropy alloy synthesis methods are time-consuming,energy-intensive,and environmentally polluting,which limits their application in the hydrogen evolution reaction(HER).This study leveraged the capabilities of flash Joule heating(FJH)to synthesize carbon-supported high-entropy alloy sulfide nanoparticles(CC-S-HEA)on carbon cloth(CC)with good self-standing properties within 300 ms.The carbon thermal shock generated by the Joule heating could pyrolyze the sulfur source into gas,resulting in numerous pore structures and defects on CC,forming an S-doped carbon substrate(CC-S).Then the S atoms were used to stably anchor the metal atoms on CC-S to form high-density uniformly dispersed HEA particles.The electrochemical test results demonstrated that CC-S-HEA prepared at 60 V flash voltage had HER performance comparable to Pt/C.The density functional theory(DFT)calculation indicated that the S atoms on CC-S accelerated the electron transfer between the carbon substrate and HEA particles.Moreover,the unique electronic structure of CC-S-HEA was beneficial to H*adsorption and promoted catalytic kinetics.The simplicity and versatility of FJH synthesis are of great significance for optimizing the synthesis of HEA and improving the quality of HEA products,which provides a broad application prospect for the synthesis of nanocatalysts with efficient HER performance.
基金supported by China National Natural Science Foundation(grant nos.82374445,82303061,82305233 and 82373179)Shanghai Shuguang Scholar(grant no.22SG42)+3 种基金Scientific research project of Shanghai Municipal Health Commission(grant no.20224Z0019)Key Discipline Construction Project of Shanghai Three Year Action Plan for Strengthening the Construction of Public Health System(grant no.GWVI-11.1-24)High-level Chinese Medicine Key Discipline Construction Project(Integrative Chinese and Western Medicine Clinic)of National Administration of TCM(grant no.zyyzdxk-2023065)Evidence-based dermatology base sponsored by state Administration of Traditional Chinese medicine.
文摘Psoriasis is a common chronic inflammatory skin disease driven by the aberrant activation of dendritic cells(DCs)and T cells,ultimately leading to increased production of cytokines such as interleukin(IL)-23 and IL-17A.It is established that the cGAS-STING pathway is essential for psoriatic inflammation,however,the specific role of cGAS-STING signaling in DCs within this context remains unclear.In this study,we demonstrated the upregulation of cGAS-STING signaling in psoriatic lesions by analyzing samples from both clinical patients and imiquimod(IMQ)-treated mice.Using a conditional Sting-knockout transgenic mouse model,we elucidated the impact of cGAS-STING signaling in DCs on the activation of IL-17-and IFN-γ-producing T cells in psoriatic inflammation.Ablation of the Sting hampers DC activation leads to decreased numbers of IL-17-producing T cells and Th1 cells,and thus subsequently attenuates psoriatic inflammation in the IMQ-induced mouse model.Furthermore,we explored the therapeutic potential of the STING inhibitor C-176,which reduces psoriatic inflammation and enhances the anti-IL-17A therapeutic response.Our results underscore the critical role of cGAS-STING signaling in DCs in driving psoriatic inflammation and highlight a promising psoriasis treatment.
基金The work was financially supported by the National Natural Science of Foundation of China(No.51672114)the Natural Science Foundation of Jiangsu Province(No.BK20181469)the Zhenjiang Key Research and Development Project(Social Development)(No.SSH20190140049).
文摘Sodium-ion batteries (SIBs) have been attracting considerable attention as a promising candidate for large-scale energy storage because of the abundance and low-cost of sodium resources. However, lack of appropriate anode materials impedes further applications. Herein, a novel self-template strategy is designed to synthesize uniform flowerlike N-doped hierarchical porous carbon networks (NHPCN) with high content of N (15.31 at.%) assembled by ultrathin nanosheets via a self-synthesized single precursor and subsequent thermal annealing. Relying on the synergetic coordination of benzimidazole and 2-methylimidazole with metal ions to produce a flowerlike network, a self-formed single precursor can be harvested. Due to the structural and compositional advantages, including the high N doping, the expanded interlayer spacing, the ultrathin two-dimensional nano-sized subunits, and the three-dimensional porous network structure, these unique NHPCN flowers deliver ultrahigh reversible capacities of 453.7 mAh·g^−1 at 0.1 A·g^−1 and 242.5 mAh·g^−1 at 1 A·g^−1 for 2,500 cycles with exceptional rate capability of 5 A·g^−1 with reversible capacities of 201.2 mAh·g^−1. The greatly improved sodium storage performance of NHPCN confirms the importance of reasonable engineering and synthesis of hierarchical carbon with unique structures.
基金The work was financially supported by the Natural Science Foundation of Jiangsu Province(No.BK20181469)the Science and Technology Planning Social Development Project of Zhenjiang City(No.SSH20190140049).
文摘Developing suitable electrode materials for electrochemical energy storage devices by biomorph assisted design has become a fascinating topic due to the fantastic properties derived from bio-architectures.Herein,zephyranthes-like Co_(2)NiSe_(4)arrays grown on butterfly wings derived three-dimensional(3D)carbon framework(Z-Co_(2)NiSe_(4)/BWC)is fabricated via hydrothermal assembly and further conversion method.Benefiting from its unique structure and multi-components,the obtained Z-Co_(2)NiSe_(4)/BWC electrode for supercapacitor delivers an excellent specific capacitance of 2,280 F·g^(-1)at 1 A·g^(-1).Impressively,the constructed asymmetric supercapacitor using Co_(2)NiSe_(4)/BWC as positive electrode and activated butterfly wings carbon as negative electrode acquires a high energy density of 42.9 Wh·kg^(-1)at a power density of 800 W·kg^(-1)with robust stability of 94.6%capacitance retention at 10 A·g^(-1)after 5,000 cycles.Moreover,the Z-Co_(2)NiSe_(4)/BWC as anode for sodium-ion batteries exhibits a high specific capacity of 568 mAh·g^(-1)at 0.1 A·g^(-1)and high cycling stability(maintaining 80.1%of the second cycle after 100 cycles).The outstanding electrochemical performances are ascribed to that the synergistic effect of bimetallic selenides and N-doped carbon improves electrochemical activities and conductivity.One-dimensional(1D)nanoneedles grown on 3D porous framework increase the exposure of redox-active sites,endow adequate transmission channels of electrons/ions,and guarantee stability of the electrode during charge/discharge processes.This study will shed light on the avenue towards extending such nanohybrids to excellent energy storage applications.
基金This project has been supported by the National Natural Science Foundation of China(32170821,31771589 to K.Y)Ministry of Science and Technology of the People’s Republic of China(2021YFC2701202)+1 种基金Department of Science&Technology of Hunan Province(2021JJ10054,2019SK1012,2018DK2015,2017RS3013,2017XK2011 to K.Y,2019JJ40478 to P.L,and the innovative team program 2019RS1010)Central South University(2018CX032 to K.Y,and the innovation-driven team project 2020CX016)。
文摘Mouse embryonic stem cells(mESCs)cycle in and out of a transient 2-cell(2C)-like totipotent state,driven by a com-plex genetic circuit involves both the coding and repetitive sections of the genome.While a vast array of regulators,including the multi-functional protein Rif1,has been reported to influence the switch of fate potential,how they act in concert to achieve this cellular plasticity remains elusive.Here,by modularizing the known totipotency regulatory factors,we identify an unprecedented functional connection between Rif1 and the non-canonical polycomb repres-sive complex PRC1.6.Downregulation of the expression of either Rif1 or PRC1.6 subunits imposes similar impacts on the transcriptome of mESCs.The LacO-LacI induced ectopic colocalization assay detects a specific interaction between Rif1 and Pcgf6,bolstering the intactness of the PRC1.6 complex.Chromatin immunoprecipitation followed by sequencing(ChIP-seq)analysis further reveals that Rif1 is required for the accurate targeting of Pcgf6 to a group of genomic loci encompassing many genes involved in the regulation of the 2C-like state.Depletion of Rif1 or Pcgf6 not only activates 2C genes such as Zscan4 and Zfp352,but also derepresses a group of the endogenous retroviral element MERVL,a key marker for totipotency.Collectively,our findings discover that Rif1 can serve as a novel auxiliary component in the PRC1.6 complex to restrain the genetic circuit underlying totipotent fate potential,shedding new mechanistic insights into its function in regulating the cellular plasticity of embryonic stem cells.