The lithium-sulfur reaction can contribute to the chemical electrical energy conversion capacity due to the multi-level ion/electron transfer process. However, the appearance of soluble intermediate products prevents ...The lithium-sulfur reaction can contribute to the chemical electrical energy conversion capacity due to the multi-level ion/electron transfer process. However, the appearance of soluble intermediate products prevents efficient electron transfer, making it impossible to achieve stable cycling and capacity contribution. Restricted catalysis provides a solution for inhibiting the shuttle of soluble lithium polysulfides.Herein, MXene aerogel with optimized channel utilization is designed as S host according to the polysulfide control strategy of localization, adsorption, and catalysis. With the help of the results of oriented channels, the polysulfide conversion process is optimized, providing a comprehensive scheme for inhibiting the shuttle effect. Lithium sulfur catalytic batteries have achieved high capacity and stable cycling.This system provides a comprehensive solution for lithium sulfur reaction catalysis and a new perspective for the functional application of MXene based lithium sulfur batteries.展开更多
<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""> </span><span style="font-family:Verdana;">To </sp...<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""> </span><span style="font-family:Verdana;">To </span><span style="font-family:""><span style="font-family:Verdana;">put forward suggestions to improve the linkage mechanism between China’s essential medicine list and healthcare insurance medicine list. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Comparative study of the organization setting, selection criteria, adjustment procedures, and reimbursement of essential medicine list and healthcare insurance medicine list, containing</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">both the foreign experience and China’s status quo. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">When two lists exist at the same time, they are often managed separately abroad, setting more selection criteria for the essential medicine, and giving the essential medicine </span></span><span style="font-family:Verdana;">a </span><span style="font-family:""><span style="font-family:Verdana;">higher payment ratio. The two lists in China are managed and adjusted separately, but lack of con</span><span style="font-family:Verdana;">nection</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> As a result,</span><span style="font-family:""> </span><span style="font-family:Verdana;">some essential medicines cannot be reimbursed</span><span style="font-family:""><span style="font-family:Verdana;">. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The two lists’ linkage mechanism needs to be improved. It is recommended to </span></span><span style="font-family:Verdana;">make it </span><span style="font-family:Verdana;">clear that essential medicines should be selected from the healthcare insurance medicine list, and enhance the consistency of medicine evaluation through mutually scientific evidence.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Wild strawberry Fragaria vesca is emerging as an important model system for the cultivated strawberry due to its diploid genome and availability of extensive transcriptome data and a range of molecular genetic tools.B...Wild strawberry Fragaria vesca is emerging as an important model system for the cultivated strawberry due to its diploid genome and availability of extensive transcriptome data and a range of molecular genetic tools.Being able to better utilize these tools,especially the transcriptome data,will greatly facilitate research progress in strawberry and other Rosaceae fruit crops.The electronic fluorescent pictograph(eFP)software is a useful and popular tool to display transcriptome data visually,and is widely used in other model organisms including Arabidopsis and mouse.Here we applied eFP to display wild strawberry RNA sequencing(RNA-seq)data from 42 different tissues and stages,including various flower and fruit developmental stages.In addition,we generated eight additional RNA-seq data sets to represent tissues from ripening-stage receptacle fruit from yellow-colored and red-colored wild strawberry varieties.Differential gene expression analysis between these eight data sets provides additional information for understanding fruit-quality traits.Together,this work greatly facilitates the utility of the extensive transcriptome data for investigating strawberry flower and fruit development as well as fruit-quality traits.展开更多
Stone cells have been described to substantially influence pear fruit quality,as lignin and cellulose are the main components of stone cells.However,there are limited studies on the relationship between the variation ...Stone cells have been described to substantially influence pear fruit quality,as lignin and cellulose are the main components of stone cells.However,there are limited studies on the relationship between the variation and molecular basis of stone cells,lignin and cellulose content among different pear varieties.Here,to reveal the variation of stone cell content within different cultivated species,we collected 236 germplasms of sand pear(Pyrus pyrifolia)at 50 days after flower blooming(DAFB),the key stage of stone cell formation.In our results,we measured the content of stone cells,lignin and cellulose and found that these contents ranged from2.82%to 29.00%,8.84%to 55.30%and 11.52%to 30.55%,respectively.Further analysis showed that the variation coefficient of stone cell,lignin and cellulose content was 39.10%,28.03%and 16.71%,respectively.Additionally,a significant correlation between stone cell,lignin and cellulose content were detected,and the correlation coefficient between the contents of stone cell and lignin(0.912)was higher than between the contents of stone cell and cellulose(0.796).Moreover,the average lignin content(29.73%)was higher than the average cellulose content(18.03%)in stone cells in pear fruits,indicating that lignin is the main component of stone cell in pears.Finally,on the basic of the transcriptome data,we identified 10 transcription factors belonging to bHLH,ERF,MYB,and NAC transcript families,which might be involved in lignin formation in stone cells.qRT-PCR experiments verified coincident trends between expression of candidate genes and stone cell content.This research laid foundation for future studies on genetic variation of stone cells in pear fruits and provided important gene resources for stone cell regulation.展开更多
Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In thi...Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation. We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed together to achieve better segmentation performance.展开更多
Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmenta...Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an optimal set of texture features including high order statistical texture features and anatomical structural features. Then, it creates liver distribution image by classifying the original image pixelwisely using support vector machines. Lastly, it uses a group of morphological operations to locate the liver organ accurately in the image. The novelty of the approach is resided in the fact that the features are so selected that both local and global texture distributions are considered, which is important in liver organ segmentation where neighbouring tissues and organs have similar greyscale distributions. Experiment results of liver segmentation on CT images using the proposed method are presented with performance validation and discussion.展开更多
This paper presents a fully automatic segmentation method of liver CT scans using fuzzy c-mean clustering and level set. First, the contrast of original image is enhanced to make boundaries clearer;second, a spatial f...This paper presents a fully automatic segmentation method of liver CT scans using fuzzy c-mean clustering and level set. First, the contrast of original image is enhanced to make boundaries clearer;second, a spatial fuzzy c-mean clustering combining with anatomical prior knowledge is employed to extract liver region automatically;thirdly, a distance regularized level set is used for refinement;finally, morphological operations are used as post-processing. The experiment result shows that the method can achieve high accuracy (0.9986) and specificity (0.9989). Comparing with standard level set method, our method is more effective in dealing with over-segmentation problem.展开更多
Perovskite has received extensive attention due to its excellent properties, just like photoelectric, while the instability has always troubled us to the wide application of perovskite materials. Herein, we proposed t...Perovskite has received extensive attention due to its excellent properties, just like photoelectric, while the instability has always troubled us to the wide application of perovskite materials. Herein, we proposed to use SiO_(2)and POE to encapsulate perovskite nanocrystals(PNCs). In this work, we have successfully prepared a series of perovskite composite materials and films with different concentration ratios.Due to the protection of POE, the luminous intensity of CsPbBr_(3)@POE composite film remained above 90% after stayed in the water for 42 days. The lead concentration of CsPbBr_(3)@POE composite film was 0.8 μg/m L after 48 h of immersing in deionized water. Namely, packaging PNCs in POE could effectively prevent Pb from overflowing reduce Pb pollution. Besides, the composite films showed a wide colour gamut with 117% of NTSC colour gamut, which shows that this composite material has a development prospect in the WLED field.展开更多
Objective The aim of the study was to evaluate the clinical efficacy of decitabine(DEC)combined with ruxolitinib(RUX)in the treatment of chronic myelomonocytic leukemia(CMML).Methods The clinical characteristics of 12...Objective The aim of the study was to evaluate the clinical efficacy of decitabine(DEC)combined with ruxolitinib(RUX)in the treatment of chronic myelomonocytic leukemia(CMML).Methods The clinical characteristics of 12 patients with CMML were analyzed retrospectively and subsequent target sequencing was performed to investigate the efficacy of the combined treatment with DEC and RUX and the molecular signatures therein.Results Among the 12 cases,clinical improvement was observed in all patients(100%),spleen reduction was observed in six patients(67%),and hematologic improvement was observed in four patients(33%).In the CMML-1 group,the overall response was 50%(3/6),one case achieved complete response,one achieved bone marrow remission,and one achieved hematological improvement.In the CMML-2 group,the overall response was 17%(1/6),one case achieved complete response,four showed disease progression(PD),and one exhibited no response.As expected,ASXL1 mutation was predictive for the outcome of CMML(hazard ratio of 2.97,95%confidence interval of 1.21–7.06;P=0.02).Conclusion The use of DEC combined with RUX in the treatment of CMML effectively improved the clinical response and quality of life,especially for CMML-1 patients.Ongoing clinical trials will further evaluate the safety and efficacy of this novel therapeutic approach.展开更多
Based on the existing literature,this paper analyzed and explored the factors that affect the efficiency of resource allocation,and evaluated the current situation of resource allocation in various fields.It is found ...Based on the existing literature,this paper analyzed and explored the factors that affect the efficiency of resource allocation,and evaluated the current situation of resource allocation in various fields.It is found that with the emergence of the new pattern of China’s economic development,the economic growth rate has slowed down,and the method of large-scale production driving economic growth is no longer applicable to the current economic situation.Nowadays,when structural transformation and upgrading have entered a new stage,to achieve the optimization of resource allocation efficiency,it is necessary to start from three aspects:improving information transparency,upgrading industrial structure,and planning government intervention.Through the adaptation analysis of blockchain technology and the existing problems in optimizing resource allocation efficiency,it explored the feasibility of blockchain technology to optimize resource allocation efficiency,and promote economical,efficient and high-quality development.展开更多
With the rapid development of Internet technology,the importance of blockchain technology has become increasingly prominent.Faced with this situation,extensive research has been carried out at home and abroad.Through ...With the rapid development of Internet technology,the importance of blockchain technology has become increasingly prominent.Faced with this situation,extensive research has been carried out at home and abroad.Through the analysis of relevant literature on blockchain in recent years,it is found that there are many research results of blockchain technology in medical care,finance,education,etc.,but its application in the field of resource allocation efficiency is rare.From the existing studies on the influencing factors of resource allocation efficiency in China,it is found that there are significant differences in resource allocation efficiency between China and some developed countries or between various provinces and cities of China.展开更多
The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based...The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries.展开更多
Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the train...Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the training population (TP) size on pear GS for improving its performance and reducing cost. We evaluated GS under two scenarios:(1) five-fold cross-validation in an interspecific pear family;(2) independent validation. Based on the cross-validation scheme, the prediction accuracy (PA) of eight fruit traits varied between 0.33 (fruit core vertical diameter)and 0.65 (stone cell content). Except for single fruit weight, a slightly better prediction accuracy (PA) was observed for the five parametrical methods compared with the two non-parametrical methods. In our TP of 310 individuals, 2 000 single nucleotide polymorphism (SNP) markers were sufficient to make reasonably accurate predictions. PAs for different traits increased by 18.21%-46.98%when the TP size increased from 50to 100, but the increment was smaller (-4.13%-33.91%) when the TP size increased from 200 to 250. For independent validation, the PAs ranged from 0.11 to 0.45 using rrBLUP method. In summary, our results showed that the TP size and SNP numbers had a greater impact on the PA than prediction methods. Furthermore, relatedness among the training and validation sets, and the complexity of traits should be considered when designing a TP to predict the test panel.展开更多
As the global demand for renewable energy grows,solar energy is gaining attention as a clean,sustainable energy source.Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic...As the global demand for renewable energy grows,solar energy is gaining attention as a clean,sustainable energy source.Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants.This study proposes an integrated deep learning-based photovoltaic resource assessment method.Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time.The proposed method combines the random forest,gated recurrent unit,and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment.The proposed method has strong adaptability and high accuracy even in the photovoltaic resource assessment of complex terrain and landscape.The experimental results show that the proposed method outperforms the comparison algorithm in all evaluation indexes,indicating that the proposed method has higher accuracy and reliability in photovoltaic resource assessment with improved generalization performance traditional single algorithm.展开更多
This experiment aims to isolate and inhibit three bacteria strains to provide candidate strains for the development and application of probiotics.Using bacterial morphological identification,16S rDNA sequence alignmen...This experiment aims to isolate and inhibit three bacteria strains to provide candidate strains for the development and application of probiotics.Using bacterial morphological identification,16S rDNA sequence alignment,and genetic evolution analysis,three strains were identified as Bacillus haynesii,named HP01,HD02,and HK03.Through biosurfactant activity tests,C-TAB tests,hemolysis tests,and antibacterial activity analyses,the results showed that all three strains of B.haynesii exhibited significant biosurfactant activity.Additionally,the solutions of the three strains demonstrated a pronounced antibacterial effect on Staphylococcus aureus.The resistance and safety of commonly used drugs were evaluated using the tablet diffusion method and a mouse feeding test.The results indicated that the three strains were not resistant to commonly used antibacterial drugs,and the oral bacterial solution was not pathogenic and had high safety in mice.The study concluded that all three B.haynesii strains met the basic conditions for use,with B.haynesii HP01 being the most promising candidate.展开更多
Within the expanse of China’s coastline, the invasive alien cordgrass species Spartina alterniflora has caused profound nationwide damage and has emerged as a critical factor contributing to the degradation of mangro...Within the expanse of China’s coastline, the invasive alien cordgrass species Spartina alterniflora has caused profound nationwide damage and has emerged as a critical factor contributing to the degradation of mangrove wetlands, especially in the study area in Beihai, Guangxi. However, current treatments for S. alterniflora remain less effective and limited research focuses on the preliminary changes after artificial plantation. A comprehensive approach combining physical interventions with biological control measures has been employed to eradicate smooth cordgrass and facilitate the restoration of native mangrove wetlands. The study involved the periodic monitoring of the growth conditions of mangroves and the biodiversity of avian and benthic organisms, conducted at three to four-month intervals following the artificial plantation with one-year-old seedlings and propagules of native mangrove species Rhizophora stylosa. Results indicated that through the allometric equation, the above-ground biomass of planted seedlings had a ~20 g increase in average but the growth conditions were not significant over an eight-month period. High percentage of important avian species underlined the potential of the study site to serve as a worthwhile habitat and notable seasonal variations were observed in the biodiversity of bird species. Biodiversity indices of bird and benthos species also followed a similar fluctuation and reached a peak in April 2023. This research underscores the initial lack of distinct improvements during the early stages of the ecological restoration project, thorough maintenance, long-term monitoring, holistic considerations on a larger scale would be imperative for ongoing projects in the future.展开更多
光催化CO_(2)高效、环保地转化为高附加值化工产品(CH_(4),CO,CH_(3)OH等),能够有效降低环境污染并且促进资源利用.商用P25(TiO_(2))因其具有无毒、化学稳定性和强氧化还原电位而被广泛研究.然而,TiO_(2)的带隙高达3.0 e V,只有在紫外...光催化CO_(2)高效、环保地转化为高附加值化工产品(CH_(4),CO,CH_(3)OH等),能够有效降低环境污染并且促进资源利用.商用P25(TiO_(2))因其具有无毒、化学稳定性和强氧化还原电位而被广泛研究.然而,TiO_(2)的带隙高达3.0 e V,只有在紫外光激发下才能产生光生载流子,这极大地限制了其在光催化领域的应用.单原子催化剂(SACs)具有金属原子利用率高、选择性高和活性高等优点,可用于精细化工合成、氧还原和污染物降解等催化领域.由于单个原子具有极高的表面自由能,因此如何稳定地保持原子分散,避免原子团聚成为SACs制备和反应过程中的一大挑战.本文通过简单的负压封装后热解方法实现了Fe在TiO_(2)表面的原子级分散负载,所制备的Fe SA/TiO_(2)催化剂展现出高效的光催化CO_(2)还原性能,并且利用多种表征手段及理论计算研究了TiO_(2)表面Fe位点促进CO_(2)高效转化的反应机制.扫描透射电子显微镜高角环形暗场像(HADDF-STEM)表明Fe以单原子形式分散在TiO_(2)表面.利用X射线吸收光谱研究了10Fe SA/TiO_(2)的配位情况和价态,结果表明,Fe的平均价态在Fe^(2+)和Fe^(3+)之间,10Fe SA/TiO_(2)中存在Fe-O键而不是Fe-Fe键.光电化学性能测试结果表明,Fe单原子的引入有利于光生载流子的分离,提高了可见光的利用率.光催化CO_(2)还原实验结果表明,最优的10Fe SA/TiO_(2)催化剂展示了最好的光催化CO_(2)转化为CO(48.2μmol·g^(-1)·h^(-1))和CH4(113.4μmol·g^(-1)·h^(-1))性能,而TiO_(2)体系仅产生少量CO(2.7μmol·g^(-1)·h^(-1)).13C同位素标记结果表明,产物中的C来自CO_(2)的催化转化.通过密度泛函理论计算对Fe单原子引入增强的CO_(2)还原性能机理进行探究,结果表明,CO_(2)在Fe位点的吸附能显著高于TiO_(2)中的Ti位点,Fe SA/TiO_(2)的d带中心向费米能级的偏移进一步证实了Fe位点的引入促进了催化剂对C1小分子的吸附.CO_(2)吸附在催化剂表面的差分电荷密度分布表明,Fe SA/TiO_(2)上的电子沿Ti-O-Fe-C路径快速转移.吉布斯自由能的计算结果表明,Fe SA/TiO_(2)表面形成*COOH所需能量(0.89 eV)明显低于TiO_(2)(1.51 e V),且CO^(*)在Fe位点转化为CHO*和进一步加氢生成CH_(4)在热力学上都是有利的.采用原位红外对CO_(2)在催化剂表面反应的中间产物进行检测,结果发现*CO,*COOH,CHO*等中间产物的存在,基于上述研究提出了FeSA/TiO_(2)光催化还原CO_(2)可能的反应路径.综上,本文为设计CO_(2)转化为高附加值产物的单原子催化剂提供了有效策略.展开更多
Ascorbic acid(AsA),an important antioxidant and growth regulator,and it is essential for plant development and human health.Specifically,humans have to acquire AsA from dietary sources due to their inability to synthe...Ascorbic acid(AsA),an important antioxidant and growth regulator,and it is essential for plant development and human health.Specifically,humans have to acquire AsA from dietary sources due to their inability to synthesize it.The AsA biosynthesis pathway in plants has been elucidated,but its regulatory mechanism remains largely unknown.In this report,we biochemically identified a CCAAT-box transcription factor(SlNFYA10)that can bind to the promoter of SlGME1,which encodes GDP-Man-3’,5’-epimerase,a pivotal enzyme in the D-mannose/L-galactose pathway.Importantly,SlNFYA10 simultaneously binds to the promoter of SlGGP1,a downstream gene of SlGME1 in the Dmannose/L-galactose pathway.Binding assays in yeast and functional analyses in plants have confirmed that SlNFYA10 exerts a negative effect on the expression of both SlGME1 and SlGGP1.Transgenic tomato lines overexpressing SlNFYA10 show decreased levels of SlGME1 and SlGGP1 abundance and AsA concentration in their leaves and fruits,accompanied by enhanced sensitivity to oxidative stress.Overall,SlNFYA10 is the first CCAAT-binding factor identified to date to negatively regulate the AsA biosynthetic pathway at multiple sites and modulate plant responses to oxidative stress.展开更多
Plant multidrug and toxic compound extrusion(MATE) genes play an important role in the process of detoxification, plant morphogenesis, and anthocyanin accumulation. However, whether the MATE gene family functions in p...Plant multidrug and toxic compound extrusion(MATE) genes play an important role in the process of detoxification, plant morphogenesis, and anthocyanin accumulation. However, whether the MATE gene family functions in pear peel coloration is still unknown. To evaluate and identify the MATE gene family members which are involving in anthocyanin accumulation and coloration in pear. In this study, 85 MATE genes were identified in the reference pear genome of ‘Dangshansuli’ through genome-wide identification. Based on gene structure and phylogenetic tree analysis, the MATE family was divided into five subfamilies. RNA sequencing and quantitative real-time polymerase chain reaction(qRTPCR) indicated that the expression patterns of PbrMATEs were tissue-specific. 28.24%(24) of PbrMATE genes were expressed in the fruits, and44.71%(38) of PbrMATE genes were expressed in the leaves. Additionally, we found that the expression levels of PbrMATE9, PbrMATE26,PbrMATE50, and PbrMATE69 in debagged fruits with red peel were significantly higher than those in bagged fruits without red peel, according to our bagging/debagging treatment of ‘Mantianhong’. The expression pattern of PbrMATE9 was consistent with the variation trend in anthocyanin content, suggesting that it might play an important role in anthocyanin accumulation in response to light exposure. Subcellular localization showed that PbrMATE9 was a membrane protein. More strikingly, the transient overexpression of PbrMATE9 promoted anthocyanin accumulation in the peel of pear, and the expression of structural genes(PbrCHI, PbrANS, PbrDFR, and PbrUFGT) in the anthocyanin biosynthesis pathway also increased significantly. Through co-expression network analysis, the transcription factors were identified, such as WRKY, COL,GATA, and BBX, which might be involved in the regulation of PbrMATE9. The study has enriched the genetic resources and improved the understanding of the regulation network of anthocyanin accumulation in pear.展开更多
基金the financial support provided by the Development Plan of Science and Technology of Jilin Province,China (YDZJ202301ZYTS280)the Natural Science Foundation of Jilin Province (YDZJ202401316ZYTS)+2 种基金the Innovation Laboratory Development Program of Education Department of Jilin ProvinceIndustry and Information Technology Department of Jilin Province,China (The Joint Laboratory of MXene Materials)MXene Research Support Plan of Jilin 11 Technology Co.,Ltd.China。
文摘The lithium-sulfur reaction can contribute to the chemical electrical energy conversion capacity due to the multi-level ion/electron transfer process. However, the appearance of soluble intermediate products prevents efficient electron transfer, making it impossible to achieve stable cycling and capacity contribution. Restricted catalysis provides a solution for inhibiting the shuttle of soluble lithium polysulfides.Herein, MXene aerogel with optimized channel utilization is designed as S host according to the polysulfide control strategy of localization, adsorption, and catalysis. With the help of the results of oriented channels, the polysulfide conversion process is optimized, providing a comprehensive scheme for inhibiting the shuttle effect. Lithium sulfur catalytic batteries have achieved high capacity and stable cycling.This system provides a comprehensive solution for lithium sulfur reaction catalysis and a new perspective for the functional application of MXene based lithium sulfur batteries.
文摘<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""> </span><span style="font-family:Verdana;">To </span><span style="font-family:""><span style="font-family:Verdana;">put forward suggestions to improve the linkage mechanism between China’s essential medicine list and healthcare insurance medicine list. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Comparative study of the organization setting, selection criteria, adjustment procedures, and reimbursement of essential medicine list and healthcare insurance medicine list, containing</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">both the foreign experience and China’s status quo. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">When two lists exist at the same time, they are often managed separately abroad, setting more selection criteria for the essential medicine, and giving the essential medicine </span></span><span style="font-family:Verdana;">a </span><span style="font-family:""><span style="font-family:Verdana;">higher payment ratio. The two lists in China are managed and adjusted separately, but lack of con</span><span style="font-family:Verdana;">nection</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> As a result,</span><span style="font-family:""> </span><span style="font-family:Verdana;">some essential medicines cannot be reimbursed</span><span style="font-family:""><span style="font-family:Verdana;">. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The two lists’ linkage mechanism needs to be improved. It is recommended to </span></span><span style="font-family:Verdana;">make it </span><span style="font-family:Verdana;">clear that essential medicines should be selected from the healthcare insurance medicine list, and enhance the consistency of medicine evaluation through mutually scientific evidence.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
基金This work has been supported by NSF grant IOS1444987 to ZLthe USDA NIFA Hatch project accession 1010278 to ZLthe China Scholarship Council student fellowship to JL.
文摘Wild strawberry Fragaria vesca is emerging as an important model system for the cultivated strawberry due to its diploid genome and availability of extensive transcriptome data and a range of molecular genetic tools.Being able to better utilize these tools,especially the transcriptome data,will greatly facilitate research progress in strawberry and other Rosaceae fruit crops.The electronic fluorescent pictograph(eFP)software is a useful and popular tool to display transcriptome data visually,and is widely used in other model organisms including Arabidopsis and mouse.Here we applied eFP to display wild strawberry RNA sequencing(RNA-seq)data from 42 different tissues and stages,including various flower and fruit developmental stages.In addition,we generated eight additional RNA-seq data sets to represent tissues from ripening-stage receptacle fruit from yellow-colored and red-colored wild strawberry varieties.Differential gene expression analysis between these eight data sets provides additional information for understanding fruit-quality traits.Together,this work greatly facilitates the utility of the extensive transcriptome data for investigating strawberry flower and fruit development as well as fruit-quality traits.
基金the National Key Research and Development Program(Grant No.2018YFD1000200)the Earmarked Fund for Jiangsu Agricultural Industry Technology System(Grant No.JATS[2019]420)the Earmarked Fund for China Agriculture Research System(Grant No.CARS-28).
文摘Stone cells have been described to substantially influence pear fruit quality,as lignin and cellulose are the main components of stone cells.However,there are limited studies on the relationship between the variation and molecular basis of stone cells,lignin and cellulose content among different pear varieties.Here,to reveal the variation of stone cell content within different cultivated species,we collected 236 germplasms of sand pear(Pyrus pyrifolia)at 50 days after flower blooming(DAFB),the key stage of stone cell formation.In our results,we measured the content of stone cells,lignin and cellulose and found that these contents ranged from2.82%to 29.00%,8.84%to 55.30%and 11.52%to 30.55%,respectively.Further analysis showed that the variation coefficient of stone cell,lignin and cellulose content was 39.10%,28.03%and 16.71%,respectively.Additionally,a significant correlation between stone cell,lignin and cellulose content were detected,and the correlation coefficient between the contents of stone cell and lignin(0.912)was higher than between the contents of stone cell and cellulose(0.796).Moreover,the average lignin content(29.73%)was higher than the average cellulose content(18.03%)in stone cells in pear fruits,indicating that lignin is the main component of stone cell in pears.Finally,on the basic of the transcriptome data,we identified 10 transcription factors belonging to bHLH,ERF,MYB,and NAC transcript families,which might be involved in lignin formation in stone cells.qRT-PCR experiments verified coincident trends between expression of candidate genes and stone cell content.This research laid foundation for future studies on genetic variation of stone cells in pear fruits and provided important gene resources for stone cell regulation.
文摘Automatic liver segmentation from abdominal images is challenging on the aspects of segmentation accuracy, automation and robustness. There exist many methods of liver segmentation and ways of categorisingthem. In this paper, we present a new way of summarizing the latest achievements in automatic liver segmentation. We categorise a segmentation method according to the image feature it works on, therefore better summarising the performance of each category and leading to finding an optimal solution for a particular segmentation task. All the methods of liver segmentation are categorized into three main classes including gray level based method, structure based method and texture based method. In each class, the latest advance is reviewed with summary comments on the advantages and drawbacks of each discussed approach. Performance comparisons among the classes are given along with the remarks on the problems existed and possible solutions. In conclusion, we point out that liver segmentation is still an open issue and the tendency is that multiple methods will be employed together to achieve better segmentation performance.
文摘Automatic segmentation of liver in medical images is challenging on the aspects of accuracy, automation and robustness. A crucial stage of the liver segmentation is the selection of the image features for the segmentation. This paper presents an accurate liver segmentation algorithm. The approach starts with a texture analysis which results in an optimal set of texture features including high order statistical texture features and anatomical structural features. Then, it creates liver distribution image by classifying the original image pixelwisely using support vector machines. Lastly, it uses a group of morphological operations to locate the liver organ accurately in the image. The novelty of the approach is resided in the fact that the features are so selected that both local and global texture distributions are considered, which is important in liver organ segmentation where neighbouring tissues and organs have similar greyscale distributions. Experiment results of liver segmentation on CT images using the proposed method are presented with performance validation and discussion.
文摘This paper presents a fully automatic segmentation method of liver CT scans using fuzzy c-mean clustering and level set. First, the contrast of original image is enhanced to make boundaries clearer;second, a spatial fuzzy c-mean clustering combining with anatomical prior knowledge is employed to extract liver region automatically;thirdly, a distance regularized level set is used for refinement;finally, morphological operations are used as post-processing. The experiment result shows that the method can achieve high accuracy (0.9986) and specificity (0.9989). Comparing with standard level set method, our method is more effective in dealing with over-segmentation problem.
基金supported by the National Natural Science Foundation of China(51872207,52072271)。
文摘Perovskite has received extensive attention due to its excellent properties, just like photoelectric, while the instability has always troubled us to the wide application of perovskite materials. Herein, we proposed to use SiO_(2)and POE to encapsulate perovskite nanocrystals(PNCs). In this work, we have successfully prepared a series of perovskite composite materials and films with different concentration ratios.Due to the protection of POE, the luminous intensity of CsPbBr_(3)@POE composite film remained above 90% after stayed in the water for 42 days. The lead concentration of CsPbBr_(3)@POE composite film was 0.8 μg/m L after 48 h of immersing in deionized water. Namely, packaging PNCs in POE could effectively prevent Pb from overflowing reduce Pb pollution. Besides, the composite films showed a wide colour gamut with 117% of NTSC colour gamut, which shows that this composite material has a development prospect in the WLED field.
基金Supported by a grant from the Fund of Ruijin Hospital North affiliated to Shanghai Jiao Tong University School of Medicine(No:2018ZY03)
文摘Objective The aim of the study was to evaluate the clinical efficacy of decitabine(DEC)combined with ruxolitinib(RUX)in the treatment of chronic myelomonocytic leukemia(CMML).Methods The clinical characteristics of 12 patients with CMML were analyzed retrospectively and subsequent target sequencing was performed to investigate the efficacy of the combined treatment with DEC and RUX and the molecular signatures therein.Results Among the 12 cases,clinical improvement was observed in all patients(100%),spleen reduction was observed in six patients(67%),and hematologic improvement was observed in four patients(33%).In the CMML-1 group,the overall response was 50%(3/6),one case achieved complete response,one achieved bone marrow remission,and one achieved hematological improvement.In the CMML-2 group,the overall response was 17%(1/6),one case achieved complete response,four showed disease progression(PD),and one exhibited no response.As expected,ASXL1 mutation was predictive for the outcome of CMML(hazard ratio of 2.97,95%confidence interval of 1.21–7.06;P=0.02).Conclusion The use of DEC combined with RUX in the treatment of CMML effectively improved the clinical response and quality of life,especially for CMML-1 patients.Ongoing clinical trials will further evaluate the safety and efficacy of this novel therapeutic approach.
基金Supported by Student’s Platform for Innovation and Entrepreneurship Training Program at the State Level(202110414021)。
文摘Based on the existing literature,this paper analyzed and explored the factors that affect the efficiency of resource allocation,and evaluated the current situation of resource allocation in various fields.It is found that with the emergence of the new pattern of China’s economic development,the economic growth rate has slowed down,and the method of large-scale production driving economic growth is no longer applicable to the current economic situation.Nowadays,when structural transformation and upgrading have entered a new stage,to achieve the optimization of resource allocation efficiency,it is necessary to start from three aspects:improving information transparency,upgrading industrial structure,and planning government intervention.Through the adaptation analysis of blockchain technology and the existing problems in optimizing resource allocation efficiency,it explored the feasibility of blockchain technology to optimize resource allocation efficiency,and promote economical,efficient and high-quality development.
基金Supported by National Innovation Planning Project for University Students in 2021 (202110414021)
文摘With the rapid development of Internet technology,the importance of blockchain technology has become increasingly prominent.Faced with this situation,extensive research has been carried out at home and abroad.Through the analysis of relevant literature on blockchain in recent years,it is found that there are many research results of blockchain technology in medical care,finance,education,etc.,but its application in the field of resource allocation efficiency is rare.From the existing studies on the influencing factors of resource allocation efficiency in China,it is found that there are significant differences in resource allocation efficiency between China and some developed countries or between various provinces and cities of China.
基金Natural Science Foundation of Hunan Province (No.2020JJ4734)High Performance Computing Center of Central South University。
文摘The thermodynamic instability of zinc anodes in aqueous electrolytes leads to issues such as corrosion,hydrogen evolution reactions(HER), and dendrite growth, severely hindering the practical application of zinc-based aqueous energy storage devices. To address these challenges, this work proposes a dualfunction zinc anode protective layer, composed of Zn-Al-In layered double oxides(ILDO) by rationally designing Zn-Al layered double hydroxides(Zn-Al LDHs) for the first time. Differing from previous works on the LDHs coatings, firstly, the ILDO layer accelerates zinc-ion desolvation and also captures and anchors SO_(4)^(2-). Secondly, the in-situ formation of the Zn-In alloy phase effectively lowers the nucleation energy barrier, thereby regulating zinc nucleation. Consequently, the zinc anode with the ILDO protective layer demonstrates long-term stability exceeding 1900 h and low voltage hysteresis of 7.5 m V at 0.5 m A cm^(-2) and 0.5 m A h cm^(-2). Additionally, it significantly enhances the rate capability and cycling performance of Zn@ILDO//MnO_(2) full batteries and Zn@ILDO//activated carbon zinc-ion hybrid capacitors.This simple and effective dual-function protective layer strategy offers a promising approach for achieving high-performance zinc-ion batteries.
基金supported by the National Key Research and Development Program (Grant No.2022YFD1200503)Jiangsu Agricultural Science and Technology Innovation Fund [Grant No.CX(22)3043]+1 种基金the Earmarked Fund for China Agriculture Research System (Grant No.CARS-28)the Earmarked Fund for Jiangsu Agricultural Industry Technology System (Grant No.JATS [2022]454)。
文摘Genomic selection (GS) has the potential to improve selection efficiency and shorten the breeding cycle in fruit tree breeding. In this study,we evaluated the effect of prediction methods, marker density and the training population (TP) size on pear GS for improving its performance and reducing cost. We evaluated GS under two scenarios:(1) five-fold cross-validation in an interspecific pear family;(2) independent validation. Based on the cross-validation scheme, the prediction accuracy (PA) of eight fruit traits varied between 0.33 (fruit core vertical diameter)and 0.65 (stone cell content). Except for single fruit weight, a slightly better prediction accuracy (PA) was observed for the five parametrical methods compared with the two non-parametrical methods. In our TP of 310 individuals, 2 000 single nucleotide polymorphism (SNP) markers were sufficient to make reasonably accurate predictions. PAs for different traits increased by 18.21%-46.98%when the TP size increased from 50to 100, but the increment was smaller (-4.13%-33.91%) when the TP size increased from 200 to 250. For independent validation, the PAs ranged from 0.11 to 0.45 using rrBLUP method. In summary, our results showed that the TP size and SNP numbers had a greater impact on the PA than prediction methods. Furthermore, relatedness among the training and validation sets, and the complexity of traits should be considered when designing a TP to predict the test panel.
基金funded by Key-Area Research and Development Program Project of Guangdong Province (2021B0101230003)China Southern Power Grid Science and Technology Project (ZBKJXM20220004).
文摘As the global demand for renewable energy grows,solar energy is gaining attention as a clean,sustainable energy source.Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants.This study proposes an integrated deep learning-based photovoltaic resource assessment method.Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time.The proposed method combines the random forest,gated recurrent unit,and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment.The proposed method has strong adaptability and high accuracy even in the photovoltaic resource assessment of complex terrain and landscape.The experimental results show that the proposed method outperforms the comparison algorithm in all evaluation indexes,indicating that the proposed method has higher accuracy and reliability in photovoltaic resource assessment with improved generalization performance traditional single algorithm.
基金Natural Science Foundation of Guangdong Province in 2023(No.2023A1515012181)Self-funded Science and Technology Innovation Project of Foshan City in 2022(No.220001005797)+1 种基金Basic and Applied Basic Research Foundation of Guangdong Province in 2022(No.2022A1515140052)Innovation Project of Guangdong Graduate Education in 2022(No.2022JGXM129,No.2022JGXM128)and 2023(No.2023ANLK-080)。
文摘This experiment aims to isolate and inhibit three bacteria strains to provide candidate strains for the development and application of probiotics.Using bacterial morphological identification,16S rDNA sequence alignment,and genetic evolution analysis,three strains were identified as Bacillus haynesii,named HP01,HD02,and HK03.Through biosurfactant activity tests,C-TAB tests,hemolysis tests,and antibacterial activity analyses,the results showed that all three strains of B.haynesii exhibited significant biosurfactant activity.Additionally,the solutions of the three strains demonstrated a pronounced antibacterial effect on Staphylococcus aureus.The resistance and safety of commonly used drugs were evaluated using the tablet diffusion method and a mouse feeding test.The results indicated that the three strains were not resistant to commonly used antibacterial drugs,and the oral bacterial solution was not pathogenic and had high safety in mice.The study concluded that all three B.haynesii strains met the basic conditions for use,with B.haynesii HP01 being the most promising candidate.
文摘Within the expanse of China’s coastline, the invasive alien cordgrass species Spartina alterniflora has caused profound nationwide damage and has emerged as a critical factor contributing to the degradation of mangrove wetlands, especially in the study area in Beihai, Guangxi. However, current treatments for S. alterniflora remain less effective and limited research focuses on the preliminary changes after artificial plantation. A comprehensive approach combining physical interventions with biological control measures has been employed to eradicate smooth cordgrass and facilitate the restoration of native mangrove wetlands. The study involved the periodic monitoring of the growth conditions of mangroves and the biodiversity of avian and benthic organisms, conducted at three to four-month intervals following the artificial plantation with one-year-old seedlings and propagules of native mangrove species Rhizophora stylosa. Results indicated that through the allometric equation, the above-ground biomass of planted seedlings had a ~20 g increase in average but the growth conditions were not significant over an eight-month period. High percentage of important avian species underlined the potential of the study site to serve as a worthwhile habitat and notable seasonal variations were observed in the biodiversity of bird species. Biodiversity indices of bird and benthos species also followed a similar fluctuation and reached a peak in April 2023. This research underscores the initial lack of distinct improvements during the early stages of the ecological restoration project, thorough maintenance, long-term monitoring, holistic considerations on a larger scale would be imperative for ongoing projects in the future.
基金supported by grants from the National Key Research&Development Plan(2018YFD1000800,2016YFD0100204-21)National Natural Science Foundation of China(31991182,31972426,and 31672166)+1 种基金Fundamental Research Funds for the Central Universities(2662018PY073)Wuhan Frontier Projects for Applied Foundation(2019020701011492).
文摘Ascorbic acid(AsA),an important antioxidant and growth regulator,and it is essential for plant development and human health.Specifically,humans have to acquire AsA from dietary sources due to their inability to synthesize it.The AsA biosynthesis pathway in plants has been elucidated,but its regulatory mechanism remains largely unknown.In this report,we biochemically identified a CCAAT-box transcription factor(SlNFYA10)that can bind to the promoter of SlGME1,which encodes GDP-Man-3’,5’-epimerase,a pivotal enzyme in the D-mannose/L-galactose pathway.Importantly,SlNFYA10 simultaneously binds to the promoter of SlGGP1,a downstream gene of SlGME1 in the Dmannose/L-galactose pathway.Binding assays in yeast and functional analyses in plants have confirmed that SlNFYA10 exerts a negative effect on the expression of both SlGME1 and SlGGP1.Transgenic tomato lines overexpressing SlNFYA10 show decreased levels of SlGME1 and SlGGP1 abundance and AsA concentration in their leaves and fruits,accompanied by enhanced sensitivity to oxidative stress.Overall,SlNFYA10 is the first CCAAT-binding factor identified to date to negatively regulate the AsA biosynthetic pathway at multiple sites and modulate plant responses to oxidative stress.
基金supported by the National Natural Science Foundation of China (Grant No. 31820103012)the Earmarked Fund for China Agriculture Research System (Grant No. CARS-28)the Earmarked Fund for Jiangsu Agricultural Industry Technology System [Grant No. JATS (2022)454]。
文摘Plant multidrug and toxic compound extrusion(MATE) genes play an important role in the process of detoxification, plant morphogenesis, and anthocyanin accumulation. However, whether the MATE gene family functions in pear peel coloration is still unknown. To evaluate and identify the MATE gene family members which are involving in anthocyanin accumulation and coloration in pear. In this study, 85 MATE genes were identified in the reference pear genome of ‘Dangshansuli’ through genome-wide identification. Based on gene structure and phylogenetic tree analysis, the MATE family was divided into five subfamilies. RNA sequencing and quantitative real-time polymerase chain reaction(qRTPCR) indicated that the expression patterns of PbrMATEs were tissue-specific. 28.24%(24) of PbrMATE genes were expressed in the fruits, and44.71%(38) of PbrMATE genes were expressed in the leaves. Additionally, we found that the expression levels of PbrMATE9, PbrMATE26,PbrMATE50, and PbrMATE69 in debagged fruits with red peel were significantly higher than those in bagged fruits without red peel, according to our bagging/debagging treatment of ‘Mantianhong’. The expression pattern of PbrMATE9 was consistent with the variation trend in anthocyanin content, suggesting that it might play an important role in anthocyanin accumulation in response to light exposure. Subcellular localization showed that PbrMATE9 was a membrane protein. More strikingly, the transient overexpression of PbrMATE9 promoted anthocyanin accumulation in the peel of pear, and the expression of structural genes(PbrCHI, PbrANS, PbrDFR, and PbrUFGT) in the anthocyanin biosynthesis pathway also increased significantly. Through co-expression network analysis, the transcription factors were identified, such as WRKY, COL,GATA, and BBX, which might be involved in the regulation of PbrMATE9. The study has enriched the genetic resources and improved the understanding of the regulation network of anthocyanin accumulation in pear.