Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to ...Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.展开更多
The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI...The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.展开更多
Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their po...Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their potential in promoting CO_(2)reduction reaction(CO_(2)RR),however,their low phase stability has limited their application perspective.Herein,we present a reduced graphene oxide(rGO)wrapped CsPbI_3 perovskite nanocrystal(NC)CO_(2)RR catalyst(CsPbI_3/rGO),demonstrating enhanced stability in the aqueous electrolyte.The CsPbI_3/rGO catalyst exhibited>92%Faradaic efficiency toward formate production at a CO_(2)RR current density of~12.7 mA cm^(-2).Comprehensive characterizations revealed the superior performance of the CsPbI_3/rGO catalyst originated from the synergistic effects between the CsPbI_3 NCs and rGO,i.e.,rGO stabilized theα-CsPbI_3 phase and tuned the charge distribution,thus lowered the energy barrier for the protonation process and the formation of~*HCOO intermediate,which resulted in high CO_(2)RR selectivity toward formate.This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO_(2)RR toward valuable fuels.展开更多
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability,which seriously hinder the transformation of stem cellbased tissue regeneration into clinical practice.Extrace...Cell transplantation therapy has certain limitations including immune rejection and limited cell viability,which seriously hinder the transformation of stem cellbased tissue regeneration into clinical practice.Extracellular vesicles(EVs)not only possess the advantages of its derived cells,but also can avoid the risks of cell transplantation.EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities,tissue repair and regeneration by transmitting a variety of biological signals,showing great potential in cell-free tissue regeneration.In this review,we summarized the origins and characteristics of EVs,introduced the pivotal role of EVs in diverse tissues regeneration,discussed the underlying mechanisms,prospects,and challenges of EVs.We also pointed out the problems that need to be solved,application directions,and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.展开更多
With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of...With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of aluminum on pellet quality must be identified.In this study,the influence of aluminum occurrence and content on the induration of hematite(H)and magnetite(M)pellets was investigated through the addition of corresponding Al-containing additives,including alumina,alumogoethite,gibbsite,and kaolinite.Systematic mineralogical analysis,combined with the thermodynamic properties of different aluminum occurrences and the quantitative characterization of consolidation behaviors,were conducted to determine the related mechanism.The results showed that the alumina from various aluminum occurrences adversely affected the induration characteristics of pellets,especially at an aluminum content of more than 2.0wt%.The thermal decomposition of gibbsite and kaolinite tends to generate internal stress and fine cracks,which hinder the respective microcrystalline bonding and recrystallization between Fe2O3particles.The adverse effect on the induration characteristics of fired pellets with different aluminum occurrences can be relieved to varying degrees through the formation of liquid phase bonds between the hematite particles.Kaolinite is more beneficial to the induration process than the other three aluminum occurrences because of the formation of more liquid phase,which improves pellet consolidation.The research results can further provide insights into the effect of aluminum occurrence and content in iron ore concentrates on downstream processing and serve as a guide for the utilization of high-alumina iron ore concentrates in pelletization.展开更多
This study aims to discriminate between leucine-rich glioma-inactivated 1(LGI1)antibody encephalitis and gammaaminobutyric acid B(GABAB)receptor antibody encephalitis using a convolutional neural network(CNN)model.A t...This study aims to discriminate between leucine-rich glioma-inactivated 1(LGI1)antibody encephalitis and gammaaminobutyric acid B(GABAB)receptor antibody encephalitis using a convolutional neural network(CNN)model.A total of 81 patients were recruited for this study.ResNet18,VGG16,and ResNet50 were trained and tested separately using 3828 positron emission tomography image slices that contained the medial temporal lobe(MTL)or basal ganglia(BG).Leave-one-out cross-validation at the patient level was used to evaluate the CNN models.The receiver operating characteristic(ROC)curve and the area under the ROC curve(AUC)were generated to evaluate the CNN models.Based on the prediction results at slice level,a decision strategy was employed to evaluate the CNN models’performance at patient level.The ResNet18 model achieved the best performance at the slice(AUC=0.86,accuracy=80.28%)and patient levels(AUC=0.98,accuracy=96.30%).Specifically,at the slice level,73.28%(1445/1972)of image slices with GABAB receptor antibody encephalitis and 87.72%(1628/1856)of image slices with LGI1 antibody encephalitis were accurately detected.At the patient level,94.12%(16/17)of patients with GABAB receptor antibody encephalitis and 96.88%(62/64)of patients with LGI1 antibody encephalitis were accurately detected.Heatmaps of the image slices extracted using gradient-weighted class activation mapping indicated that the model focused on the MTL and BG for classification.In general,the ResNet18 model is a potential approach for discriminating between LGI1 and GABAB receptor antibody encephalitis.Metabolism in the MTL and BG is important for discriminating between these two encephalitis subtypes.展开更多
BACKGROUND Current approaches for the therapy of diabetic retinopathy(DR),which was one of leading causes of visual impairment,have their limitations.Animal experiments revealed that restructuring of intestinal microb...BACKGROUND Current approaches for the therapy of diabetic retinopathy(DR),which was one of leading causes of visual impairment,have their limitations.Animal experiments revealed that restructuring of intestinal microbiota can prevent retinopathy.AIM To explore the relationship between intestinal microbiota and DR among patients in the southeast coast of China,and provide clues for novel ways to prevention and treatment methods of DR.METHODS The fecal samples of non-diabetics(Group C,n=15)and diabetics(Group DM,n=30),including 15 samples with DR(Group DR)and 15 samples without DR(Group D),were analyzed by 16S rRNA sequencing.Intestinal microbiota compositions were compared between Group C and Group DM,Group DR and Group D,as well as patients with proliferative diabetic retinopathy(PDR)(Group PDR,n=8)and patients without PDR(Group NPDR,n=7).Spearman correlation analyses were performed to explore the associations between intestinal microbiota and clinical indicators.RESULTS The alpha and beta diversity did not differ significantly between Group DR and Group D as well as Group PDR and Group NPDR.At the family level,Fusobacteriaceae,Desulfovibrionaceae and Pseudomonadaceae were significantly increased in Group DR than in Group D(P<0.05,respectively).At the genera level,Fusobacterium,Pseudomonas,and Adlercreutzia were increased in Group DR than Group D while Senegalimassilia was decreased(P<0.05,respectively).Pseudomonas was negatively correlated with NK cell count(r=-0.39,P=0.03).Further,the abundance of genera Eubacterium(P<0.01),Peptococcus,Desulfovibrio,Acetanaerobacterium and Negativibacillus(P<0.05,respectively)were higher in Group PDR compared to Group NPDR,while Pseudomonas,Alloprevotella and Tyzzerella(P<0.05,respectively)were lower.Acetanaerobacterium and Desulfovibrio were positively correlated with fasting insulin(r=0.53 and 0.61,respectively,P<0.05),when Negativibacillus was negatively correlated with B cell count(r=-0.67,P<0.01).CONCLUSION Our findings indicated that the alteration of gut microbiota was associated with DR and its severity among patients in the southeast coast of China,probably by multiple mechanisms such as producing short-chain fatty acids,influencing permeability of blood vessels,affecting levels of vascular cell adhesion molecule-1,hypoxia-inducible factor-1,B cell and insulin.Modulating gut microbiota composition might be a novel strategy for prevention of DR,particularly PDR in population above.展开更多
Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5...Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5wt%,25wt%,and 45wt%ultrafine magnetite and 25wt%ultrafine hematite concentrates.The effects of varying the sinter basicity(CaO/SiO2 mass ratio=1.4 to 2.2)and adding ultrafine concentrates on the variation of the adhering-layer composition and granule microstructure were studied.Moreover,the effect of adhering-layer compositional changes on sintering reactions was discussed in combination with pot sintering results of ore blends.Increasing sinter basicity led to an increase in the basicities of both the adhering layer and the fine part of the sinter mix,which were higher than the overall sinter basicity.When the sinter chemistry was fixed and fine Si-bearing materials(e.g.,quartz sand)were used,increasing the amount of ultrafine ores in the ore blends tended to reduce the adhering-layer basicity and increase the SiO2 content in both the adhering layer and the fine part of the sinter mix,which will induce the formation of low-strength bonding phases and the deterioration of sinter strength.The adhering-layer composition in granules can be estimated in advance from the compositions of the-1 mm fractions of the raw materials.展开更多
The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated b...The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and A1203), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an alactrie a.re furnace to rer)la,ce scrar) steel.展开更多
Tyrosine kinase inhibitors(TKIs) have improved the overall survival of patients with gastrointestinal stromal tumors(GISTs), but their side effects can impact dose intensity and, consequently, the clinical benefit. To...Tyrosine kinase inhibitors(TKIs) have improved the overall survival of patients with gastrointestinal stromal tumors(GISTs), but their side effects can impact dose intensity and, consequently, the clinical benefit. To date, no guideline or consensus has been published on the TKI-associated adverse reactions. Therefore, the Chinese Society of Surgeons for Gastrointestinal Stromal Tumor of the Chinese Medical Doctor Association organized an expert panel discussion involving representatives from gastrointestinal surgery, medical oncology, cardiology, dermatology, nephrology, endocrinology, and ophthalmology to consider the systemic clinical symptoms, molecular and cellular mechanisms, and treatment recommendations of GISTs. Here, we present the resultant evidence-and experience-based consensus to guide the management of TKI-associated side events in clinical practice.展开更多
BACKGROUND Nerve diseases and injuries,which are usually accompanied by motor or sensory dysfunction and disorder,impose a heavy burden upon patients and greatly reduce their quality of life.Dental pulp stem cells(DPS...BACKGROUND Nerve diseases and injuries,which are usually accompanied by motor or sensory dysfunction and disorder,impose a heavy burden upon patients and greatly reduce their quality of life.Dental pulp stem cells(DPSCs),derived from the neural crest,have many characteristics that are similar to those of neural cells,indicating that they can be an ideal source for neural repair.AIM To explore the potential roles and molecular mechanisms of DPSCs in crushed nerve recovery.METHODS DPSCs were isolated,cultured,and identified by multilineage differentiation and flow cytometry.Western blot and immunofluorescent staining were applied to analyze the expression levels of neurotrophic proteins in DPSCs after neural induction.Then,we collected the secretions of DPSCs.We analyzed their effects on RSC96 cell proliferation and migration by CCK8 and transwell assays.Finally,we generated a sciatic nerve crush injury model in vivo and used the sciatic function index,walking track analysis,muscle weight,and hematoxylin&eosin(H&E)staining to further evaluate the nerve repair ability of DPSCs.RESULTS DPSCs highly expressed several specific neural markers,including GFAP,S100,Nestin,P75,and NF200,and were inclined toward neural differentiation.Furthermore,neural-induced DPSCs(N-DPSCs)could express neurotrophic factors,including NGF,BDNF,and GDNF.The secretions of N-DPSCs could enhance the proliferation and migration of Schwann cells.In vivo,both DPSC and N-DPSC implants alleviated gastrocnemius muscle atrophy.However,in terms of anatomy and motor function,as shown by H&E staining,immunofluorescent staining,and walking track analyses,the repair effects of N-DPSCs were more sustained,potent,and effective than those of DPSCs and the controls.CONCLUSION In summary,this study demonstrated that DPSCs are inclined to differentiate into neural cells.N-DPSCs express neurotrophic proteins that could enhance the proliferation and migration of SCs.Furthermore,our results suggested that NDPSCs could help crushed nerves with functional recovery and anatomical repair in vivo.Thus,DPSCs or N-DPSCs could be a promising therapeutic cell source for peripheral nerve repair and regeneration.展开更多
Energy consumption prediction of a CNC machining process is important for energy efficiency optimization strategies.To improve the generalization abilities,more and more parameters are acquired for energy prediction m...Energy consumption prediction of a CNC machining process is important for energy efficiency optimization strategies.To improve the generalization abilities,more and more parameters are acquired for energy prediction modeling.While the data collected from workshops may be incomplete because of misoperation,unstable network connections,and frequent transfers,etc.This work proposes a framework for energy modeling based on incomplete data to address this issue.First,some necessary preliminary operations are used for incomplete data sets.Then,missing values are estimated to generate a new complete data set based on generative adversarial imputation nets(GAIN).Next,the gene expression programming(GEP)algorithm is utilized to train the energy model based on the generated data sets.Finally,we test the predictive accuracy of the obtained model.Computational experiments are designed to investigate the performance of the proposed framework with different rates of missing data.Experimental results demonstrate that even when the missing data rate increases to 30%,the proposed framework can still make efficient predictions,with the corresponding RMSE and MAE 0.903 k J and 0.739 k J,respectively.展开更多
Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC ...Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC used in sintering blends is restricted. In this research, the effects of fine limonite, slake lime, and bentonite particles on the granulation performance of blends containing a high ratio of CSC were studied through granulation test. Based on the test results, the effects of modification of the binding medium on the sintering performance of blends containing a high ratio of CSC were revealed by the sintering pot test. Both the granulation property and sintering performance of blends with a high proportion of CSC were improved by modifying the binding medium.展开更多
Comprehensive utilization of pyrite cinders is increasingly important because of their huge annual outputs and potential valuable metals recovery to cope with the gradual depletion of high-grade mineral resources. In ...Comprehensive utilization of pyrite cinders is increasingly important because of their huge annual outputs and potential valuable metals recovery to cope with the gradual depletion of high-grade mineral resources. In this work, a new process, i.e., a high-temperature chlorination–magnetizing roasting–magnetic separation process, was proposed for recovering Fe and removing Zn, Pb from a low-grade pyrite cinder containing 49.90 wt% Fe, 1.23 wt% Zn, and 0.29 wt% Pb. Various parameters, including the chlorinating conditions(dosage of Ca Cl2, temperature, and time) and the magnetization roasting conditions(amount of coal, temperature, and time) were investigated. The results indicate that the proposed process is effective for Fe recovery and Zn, Pb removal from the pyrite cinder. Through this process, 97.06% Zn, 96.82% Pb, and approximately 90% S can be removed, and 89.74% Fe is recovered as magnetite into the final product under optimal conditions. A purified magnetite concentrate containing 63.07 wt% Fe, 0.16 wt% P, 0.26 wt% S, and trace amounts of nonferrous metals(0.005 wt% Cu, 0.013 wt% Pb, and 0.051 wt% Zn) was obtained. The concentrate can be potentially used as a high-quality feed material for producing oxidized pellets by blending with other high-grade iron ore concentrates.展开更多
Large amounts of solid wastes and flue gases are generated in iron and steel production process,probably leading to serious environmental pollution without duly handle.An innovative and green process of simultaneous r...Large amounts of solid wastes and flue gases are generated in iron and steel production process,probably leading to serious environmental pollution without duly handle.An innovative and green process of simultaneous reduction of zinc-bearing dusts and activation of low-rank coal was developed and its mechanism was clarified in this paper.Under the optimal conditions,the reduced zinc-bearing dusts containing low harmful elements(0.02%Zn,0.015%K and 0.03%Na)could be made as high-quality burden for blast furnace while the low-rank coal was transferred into K,Na-embedded activated carbon,which can be used as effective adsorbent for purification of SO_(2) and NO-containing flue gases.The solid wastes were successfully utilized to treat the flue gases through the process.The synergetic activation and reduction mechanism in the process was revealed.The coupling effect between reduction reactions of metal oxides in the dusts and activation reaction of carbon in the coal promoted the simultaneous reduction and activation process.In the meanwhile,part of the potassium and sodium from the zinc-bearing dusts could be adsorbed by the activated carbon and played a catalytic role in the activation process.展开更多
Lymphedema is mainly identified by progressive soft tissue swelling in impaired lymphatic system.Secondary lymphedema attributed to cancer therapy,parasite infection,and trauma remains a serious global disease.Patient...Lymphedema is mainly identified by progressive soft tissue swelling in impaired lymphatic system.Secondary lymphedema attributed to cancer therapy,parasite infection,and trauma remains a serious global disease.Patients with lymphedema suffer swelling,pain,and fatigue,with the dysfunction of the deformed extremities reducing the quality of life and increasing the risk of infection and lymphangiosarcoma.Adipose-derived stem cells(ADSCs)possess prominent regenerative potential to differentiate into multilineage cells,and produce various lymphangiogenic factors,making ADSC therapy a promising approach for lymphedema.The development of lymphedema consists of local inflammation,the fibrosis of lymphatic vessels,and the deposition of adipose fat.Existing animal models do not mimic the chronic inflammation environment,therefore suitable models are required in further studies.Some signal pathways and molecular mechanisms in physiological and pathological lymphagiogenesis remain unclear.In previous animal and human trials,ADSC therapy reduced edema in varying degrees.A larger number of trials with larger samples and longer follow-up periods are required to verify the efficiency and feasibility of ADSC therapy.ADSCs are of easy availability and immune exemption,making them a candidate for lymphedema treatment.Whether ADSCs enhance malignant characteristics or trigger the malignant change deserves further exploration and study before ADSC therapy can be made widely available.展开更多
基金the supports from Debris of the Anthropocene to Resources(DotA2)Lab at NTU.
文摘Photocatalysis offers a sustainable means for the oxidative removal of low concentrations of NOx(NO,NO2,N2O,N2O5,etc.)from the atmosphere.Layered double hydroxides(LDHs)are promising candidate photocatalysts owing to their unique layered and tunable chemical structures and abundant surface hydroxide(OH)moieties,which are hydroxyl radical(OH)precursors.However,the practical applications of LDHs are limited by their poor charge-separation ability and insufficient active sites.Herein,we developed a facile N_(2)H_(4)-driven etching approach to introduce dual Ni^(2+)and OHvacancies(Niv and OHv,respectively)into NiFe-LDH nanosheets(hereafter referred to as NiFe-LDH-et)to facilitate improved charge-carrier separation and active Lewis acidic site(Fe^(3+)and Ni^(2+)exposed at OHv)formation.In contrast to inert pristine LDH,NiFe-LDH-et actively removed NO under visible-light illumination.Specifically,Ni_(76)Fe_(24)-LDH-et etched with 1.50 mmol·L^(-1)N_(2)H_(4)solution removed 32.8%of the NO in continuously flowing air(NO feed concentration:500 parts per billion(ppb))under visible-light illumination,thereby outperforming most reported catalysts.Experimental and theoretical data revealed that the dual vacancies promoted the production of reactive oxygen species(O_(2)·^(-)andOH)and the adsorption of NO on the LDH.In situ spectroscopy demonstrated that NO was preferentially adsorbed at Lewis acidic sites,particularly exposed Fe^(3+)sites,converted into NO+,and subsequently oxidized to NO3without the notable formation of the more toxic intermediate NO2,thereby alleviating risks associated with its production and emission.
基金financially supported by the Natural Science Foundation China (No.52274343)the Youth Natural Science Foundation China (No.51904347)the China Baowu Low Carbon Metallurgy Innovation Foundation (No.BWLCF202102)。
文摘The iron and steel industry(ISI) involves high energy consumption and high pollution. ISI in China, a leading country in the ISI,consumed 15% of the country’s total energy and produced more than 50% of the global ISI’s carbon emissions. Therefore, in the context of global low-carbon economy and emission reduction requirements, low-carbon smelting technology in the ISI has attracted increasingly more attention in China. This review summarizes the current status of carbon emissions and energy consumption in China’s ISI and discusses the development status and prospects of low-carbon ironmaking technology. The main route to effectively reducing carbon emissions is to develop a gas-based direct reduction process and replace sintering with pelletizing, both of which focus on developing pelletizing technology. However,the challenge of pelletizing process development is to obtain high-quality iron concentrates. Consequently, the present paper also summarizes the development status of China’s mineral processing technology, including fine-grained mineral processing technology, magnetization roasting technology, and flotation collector application. This paper aims to provide a theoretical basis for the low-carbon development of China’s ISI in terms of a dressing–smelting combination.
基金financial support by Australian Research Council(ARC)supported by the generous funding from Science and Engineering faculty,QUT。
文摘Transformation of greenhouse gas(CO_(2))into valuable chemicals and fuels is a promising route to address the global issues of climate change and the energy crisis.Metal halide perovskite catalysts have shown their potential in promoting CO_(2)reduction reaction(CO_(2)RR),however,their low phase stability has limited their application perspective.Herein,we present a reduced graphene oxide(rGO)wrapped CsPbI_3 perovskite nanocrystal(NC)CO_(2)RR catalyst(CsPbI_3/rGO),demonstrating enhanced stability in the aqueous electrolyte.The CsPbI_3/rGO catalyst exhibited>92%Faradaic efficiency toward formate production at a CO_(2)RR current density of~12.7 mA cm^(-2).Comprehensive characterizations revealed the superior performance of the CsPbI_3/rGO catalyst originated from the synergistic effects between the CsPbI_3 NCs and rGO,i.e.,rGO stabilized theα-CsPbI_3 phase and tuned the charge distribution,thus lowered the energy barrier for the protonation process and the formation of~*HCOO intermediate,which resulted in high CO_(2)RR selectivity toward formate.This work shows a promising strategy to rationally design robust metal halide perovskites for achieving efficient CO_(2)RR toward valuable fuels.
基金Supported by The Interdisciplinary and Intercollege Research Project of the State Key Laboratory of Oral Disease,Sichuan University,No.2021KXK0403Health Commission of Sichuan Province,No.21PJ062。
文摘Cell transplantation therapy has certain limitations including immune rejection and limited cell viability,which seriously hinder the transformation of stem cellbased tissue regeneration into clinical practice.Extracellular vesicles(EVs)not only possess the advantages of its derived cells,but also can avoid the risks of cell transplantation.EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities,tissue repair and regeneration by transmitting a variety of biological signals,showing great potential in cell-free tissue regeneration.In this review,we summarized the origins and characteristics of EVs,introduced the pivotal role of EVs in diverse tissues regeneration,discussed the underlying mechanisms,prospects,and challenges of EVs.We also pointed out the problems that need to be solved,application directions,and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.
基金financially supported by the National Natural Science Foundation of China(Nos.52004339 and 52174329)the Fundamental Research Funds for the Central Universities,China(No.N2325031)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202216)。
文摘With the intensified depletion of high-grade iron ores,the increased aluminum content in iron ore concentrates has become unavoidable,which is detrimental to the pelletization process.Therefore,the effect mechanism of aluminum on pellet quality must be identified.In this study,the influence of aluminum occurrence and content on the induration of hematite(H)and magnetite(M)pellets was investigated through the addition of corresponding Al-containing additives,including alumina,alumogoethite,gibbsite,and kaolinite.Systematic mineralogical analysis,combined with the thermodynamic properties of different aluminum occurrences and the quantitative characterization of consolidation behaviors,were conducted to determine the related mechanism.The results showed that the alumina from various aluminum occurrences adversely affected the induration characteristics of pellets,especially at an aluminum content of more than 2.0wt%.The thermal decomposition of gibbsite and kaolinite tends to generate internal stress and fine cracks,which hinder the respective microcrystalline bonding and recrystallization between Fe2O3particles.The adverse effect on the induration characteristics of fired pellets with different aluminum occurrences can be relieved to varying degrees through the formation of liquid phase bonds between the hematite particles.Kaolinite is more beneficial to the induration process than the other three aluminum occurrences because of the formation of more liquid phase,which improves pellet consolidation.The research results can further provide insights into the effect of aluminum occurrence and content in iron ore concentrates on downstream processing and serve as a guide for the utilization of high-alumina iron ore concentrates in pelletization.
基金grants from the Beijing Natural Science Foundation-Haidian Original Innovation Joint Foundation,No.L222033the National Key Research and Development Program of China“Common Disease Prevention and Control Research”Key Project,No.2022YFC2503800+2 种基金the National Natural Science Foundation of China,No.81771143the Beijing Natural Science Foundation,No.7192054and the National Key Research and Development Program of China,No.2018YFC1315201.
文摘This study aims to discriminate between leucine-rich glioma-inactivated 1(LGI1)antibody encephalitis and gammaaminobutyric acid B(GABAB)receptor antibody encephalitis using a convolutional neural network(CNN)model.A total of 81 patients were recruited for this study.ResNet18,VGG16,and ResNet50 were trained and tested separately using 3828 positron emission tomography image slices that contained the medial temporal lobe(MTL)or basal ganglia(BG).Leave-one-out cross-validation at the patient level was used to evaluate the CNN models.The receiver operating characteristic(ROC)curve and the area under the ROC curve(AUC)were generated to evaluate the CNN models.Based on the prediction results at slice level,a decision strategy was employed to evaluate the CNN models’performance at patient level.The ResNet18 model achieved the best performance at the slice(AUC=0.86,accuracy=80.28%)and patient levels(AUC=0.98,accuracy=96.30%).Specifically,at the slice level,73.28%(1445/1972)of image slices with GABAB receptor antibody encephalitis and 87.72%(1628/1856)of image slices with LGI1 antibody encephalitis were accurately detected.At the patient level,94.12%(16/17)of patients with GABAB receptor antibody encephalitis and 96.88%(62/64)of patients with LGI1 antibody encephalitis were accurately detected.Heatmaps of the image slices extracted using gradient-weighted class activation mapping indicated that the model focused on the MTL and BG for classification.In general,the ResNet18 model is a potential approach for discriminating between LGI1 and GABAB receptor antibody encephalitis.Metabolism in the MTL and BG is important for discriminating between these two encephalitis subtypes.
基金Supported by Wenzhou Science and Technology Bureau,No.Y20190129 and No.Y2020263.
文摘BACKGROUND Current approaches for the therapy of diabetic retinopathy(DR),which was one of leading causes of visual impairment,have their limitations.Animal experiments revealed that restructuring of intestinal microbiota can prevent retinopathy.AIM To explore the relationship between intestinal microbiota and DR among patients in the southeast coast of China,and provide clues for novel ways to prevention and treatment methods of DR.METHODS The fecal samples of non-diabetics(Group C,n=15)and diabetics(Group DM,n=30),including 15 samples with DR(Group DR)and 15 samples without DR(Group D),were analyzed by 16S rRNA sequencing.Intestinal microbiota compositions were compared between Group C and Group DM,Group DR and Group D,as well as patients with proliferative diabetic retinopathy(PDR)(Group PDR,n=8)and patients without PDR(Group NPDR,n=7).Spearman correlation analyses were performed to explore the associations between intestinal microbiota and clinical indicators.RESULTS The alpha and beta diversity did not differ significantly between Group DR and Group D as well as Group PDR and Group NPDR.At the family level,Fusobacteriaceae,Desulfovibrionaceae and Pseudomonadaceae were significantly increased in Group DR than in Group D(P<0.05,respectively).At the genera level,Fusobacterium,Pseudomonas,and Adlercreutzia were increased in Group DR than Group D while Senegalimassilia was decreased(P<0.05,respectively).Pseudomonas was negatively correlated with NK cell count(r=-0.39,P=0.03).Further,the abundance of genera Eubacterium(P<0.01),Peptococcus,Desulfovibrio,Acetanaerobacterium and Negativibacillus(P<0.05,respectively)were higher in Group PDR compared to Group NPDR,while Pseudomonas,Alloprevotella and Tyzzerella(P<0.05,respectively)were lower.Acetanaerobacterium and Desulfovibrio were positively correlated with fasting insulin(r=0.53 and 0.61,respectively,P<0.05),when Negativibacillus was negatively correlated with B cell count(r=-0.67,P<0.01).CONCLUSION Our findings indicated that the alteration of gut microbiota was associated with DR and its severity among patients in the southeast coast of China,probably by multiple mechanisms such as producing short-chain fatty acids,influencing permeability of blood vessels,affecting levels of vascular cell adhesion molecule-1,hypoxia-inducible factor-1,B cell and insulin.Modulating gut microbiota composition might be a novel strategy for prevention of DR,particularly PDR in population above.
基金Financial supports from the National Torch Program of China (No.2011GH561685)Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources are sincerely acknowledged
文摘Some basic properties of granules,including the granule size distribution,packed-bed permeability,and chemical composition of the adhering layer,were investigated in this study for four iron ore blends consisting of 5wt%,25wt%,and 45wt%ultrafine magnetite and 25wt%ultrafine hematite concentrates.The effects of varying the sinter basicity(CaO/SiO2 mass ratio=1.4 to 2.2)and adding ultrafine concentrates on the variation of the adhering-layer composition and granule microstructure were studied.Moreover,the effect of adhering-layer compositional changes on sintering reactions was discussed in combination with pot sintering results of ore blends.Increasing sinter basicity led to an increase in the basicities of both the adhering layer and the fine part of the sinter mix,which were higher than the overall sinter basicity.When the sinter chemistry was fixed and fine Si-bearing materials(e.g.,quartz sand)were used,increasing the amount of ultrafine ores in the ore blends tended to reduce the adhering-layer basicity and increase the SiO2 content in both the adhering layer and the fine part of the sinter mix,which will induce the formation of low-strength bonding phases and the deterioration of sinter strength.The adhering-layer composition in granules can be estimated in advance from the compositions of the-1 mm fractions of the raw materials.
基金support by China Scholarship Council(No.201206370127)support from CSIRO,Australia
文摘The technology of direct reduction by adding sodium carbonate (Na2CO3) and magnetic separation was developed to treat Western Australian high phosphorus iron ore. The iron ore and reduced product were investigated by optical microscopy and scanning electron microscopy. It is found that phosphorus exists within limonite in the form of solid solution, which cannot be removed through traditional ways. During reduction roasting, Na2CO3 reacts with gangue minerals (SiO2 and A1203), forming aluminum silicate-containing phosphorus and damaging the ore structure, which promotes the separation between iron and phosphorus during magnetic separation. Meanwhile, Na2CO3 also improves the growth of iron grains, increasing the iron grade and iron recovery. The iron concentrate, assaying 94.12wt% Fe and 0.07wt% P at the iron recovery of 96.83% and the dephosphorization rate of 74.08%, is obtained under the optimum conditions. The final product (metal iron powder) after briquetting can be used as the burden for steelmaking by an alactrie a.re furnace to rer)la,ce scrar) steel.
文摘Tyrosine kinase inhibitors(TKIs) have improved the overall survival of patients with gastrointestinal stromal tumors(GISTs), but their side effects can impact dose intensity and, consequently, the clinical benefit. To date, no guideline or consensus has been published on the TKI-associated adverse reactions. Therefore, the Chinese Society of Surgeons for Gastrointestinal Stromal Tumor of the Chinese Medical Doctor Association organized an expert panel discussion involving representatives from gastrointestinal surgery, medical oncology, cardiology, dermatology, nephrology, endocrinology, and ophthalmology to consider the systemic clinical symptoms, molecular and cellular mechanisms, and treatment recommendations of GISTs. Here, we present the resultant evidence-and experience-based consensus to guide the management of TKI-associated side events in clinical practice.
基金the National Key R&D Program of China,No.2017YFA0104800the Project of Science&Technology Bureau of Chengdu,No.2016-HM01-00071-SFSichuan Academic&Technological Leaders Training Support Project.
文摘BACKGROUND Nerve diseases and injuries,which are usually accompanied by motor or sensory dysfunction and disorder,impose a heavy burden upon patients and greatly reduce their quality of life.Dental pulp stem cells(DPSCs),derived from the neural crest,have many characteristics that are similar to those of neural cells,indicating that they can be an ideal source for neural repair.AIM To explore the potential roles and molecular mechanisms of DPSCs in crushed nerve recovery.METHODS DPSCs were isolated,cultured,and identified by multilineage differentiation and flow cytometry.Western blot and immunofluorescent staining were applied to analyze the expression levels of neurotrophic proteins in DPSCs after neural induction.Then,we collected the secretions of DPSCs.We analyzed their effects on RSC96 cell proliferation and migration by CCK8 and transwell assays.Finally,we generated a sciatic nerve crush injury model in vivo and used the sciatic function index,walking track analysis,muscle weight,and hematoxylin&eosin(H&E)staining to further evaluate the nerve repair ability of DPSCs.RESULTS DPSCs highly expressed several specific neural markers,including GFAP,S100,Nestin,P75,and NF200,and were inclined toward neural differentiation.Furthermore,neural-induced DPSCs(N-DPSCs)could express neurotrophic factors,including NGF,BDNF,and GDNF.The secretions of N-DPSCs could enhance the proliferation and migration of Schwann cells.In vivo,both DPSC and N-DPSC implants alleviated gastrocnemius muscle atrophy.However,in terms of anatomy and motor function,as shown by H&E staining,immunofluorescent staining,and walking track analyses,the repair effects of N-DPSCs were more sustained,potent,and effective than those of DPSCs and the controls.CONCLUSION In summary,this study demonstrated that DPSCs are inclined to differentiate into neural cells.N-DPSCs express neurotrophic proteins that could enhance the proliferation and migration of SCs.Furthermore,our results suggested that NDPSCs could help crushed nerves with functional recovery and anatomical repair in vivo.Thus,DPSCs or N-DPSCs could be a promising therapeutic cell source for peripheral nerve repair and regeneration.
基金supported in part by the National Natural Science Foundation of China(51975075)Chongqing Technology Innovation and Application Program(cstc2018jszx-cyzd X0183)。
文摘Energy consumption prediction of a CNC machining process is important for energy efficiency optimization strategies.To improve the generalization abilities,more and more parameters are acquired for energy prediction modeling.While the data collected from workshops may be incomplete because of misoperation,unstable network connections,and frequent transfers,etc.This work proposes a framework for energy modeling based on incomplete data to address this issue.First,some necessary preliminary operations are used for incomplete data sets.Then,missing values are estimated to generate a new complete data set based on generative adversarial imputation nets(GAIN).Next,the gene expression programming(GEP)algorithm is utilized to train the energy model based on the generated data sets.Finally,we test the predictive accuracy of the obtained model.Computational experiments are designed to investigate the performance of the proposed framework with different rates of missing data.Experimental results demonstrate that even when the missing data rate increases to 30%,the proposed framework can still make efficient predictions,with the corresponding RMSE and MAE 0.903 k J and 0.739 k J,respectively.
基金financially supported by the National Natural Science Foundation of China (No. 51474161)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC used in sintering blends is restricted. In this research, the effects of fine limonite, slake lime, and bentonite particles on the granulation performance of blends containing a high ratio of CSC were studied through granulation test. Based on the test results, the effects of modification of the binding medium on the sintering performance of blends containing a high ratio of CSC were revealed by the sintering pot test. Both the granulation property and sintering performance of blends with a high proportion of CSC were improved by modifying the binding medium.
基金financially supported by the National Natural Science Foundation of China(No.51574281)the National Torch Program of China(No.2011GH561685)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘Comprehensive utilization of pyrite cinders is increasingly important because of their huge annual outputs and potential valuable metals recovery to cope with the gradual depletion of high-grade mineral resources. In this work, a new process, i.e., a high-temperature chlorination–magnetizing roasting–magnetic separation process, was proposed for recovering Fe and removing Zn, Pb from a low-grade pyrite cinder containing 49.90 wt% Fe, 1.23 wt% Zn, and 0.29 wt% Pb. Various parameters, including the chlorinating conditions(dosage of Ca Cl2, temperature, and time) and the magnetization roasting conditions(amount of coal, temperature, and time) were investigated. The results indicate that the proposed process is effective for Fe recovery and Zn, Pb removal from the pyrite cinder. Through this process, 97.06% Zn, 96.82% Pb, and approximately 90% S can be removed, and 89.74% Fe is recovered as magnetite into the final product under optimal conditions. A purified magnetite concentrate containing 63.07 wt% Fe, 0.16 wt% P, 0.26 wt% S, and trace amounts of nonferrous metals(0.005 wt% Cu, 0.013 wt% Pb, and 0.051 wt% Zn) was obtained. The concentrate can be potentially used as a high-quality feed material for producing oxidized pellets by blending with other high-grade iron ore concentrates.
基金the National Natural Science Foundation of China (No. 51574281), which supplied us with the facilities and funds needed to completed the experiments
文摘Large amounts of solid wastes and flue gases are generated in iron and steel production process,probably leading to serious environmental pollution without duly handle.An innovative and green process of simultaneous reduction of zinc-bearing dusts and activation of low-rank coal was developed and its mechanism was clarified in this paper.Under the optimal conditions,the reduced zinc-bearing dusts containing low harmful elements(0.02%Zn,0.015%K and 0.03%Na)could be made as high-quality burden for blast furnace while the low-rank coal was transferred into K,Na-embedded activated carbon,which can be used as effective adsorbent for purification of SO_(2) and NO-containing flue gases.The solid wastes were successfully utilized to treat the flue gases through the process.The synergetic activation and reduction mechanism in the process was revealed.The coupling effect between reduction reactions of metal oxides in the dusts and activation reaction of carbon in the coal promoted the simultaneous reduction and activation process.In the meanwhile,part of the potassium and sodium from the zinc-bearing dusts could be adsorbed by the activated carbon and played a catalytic role in the activation process.
基金Supported by The Project of Cadre Institution of Sichuan Province,No.2019-901The Project of Human Resources and Social Security Department Academic and Technical Leader Training Fund in Sichuan,No.2017-A.
文摘Lymphedema is mainly identified by progressive soft tissue swelling in impaired lymphatic system.Secondary lymphedema attributed to cancer therapy,parasite infection,and trauma remains a serious global disease.Patients with lymphedema suffer swelling,pain,and fatigue,with the dysfunction of the deformed extremities reducing the quality of life and increasing the risk of infection and lymphangiosarcoma.Adipose-derived stem cells(ADSCs)possess prominent regenerative potential to differentiate into multilineage cells,and produce various lymphangiogenic factors,making ADSC therapy a promising approach for lymphedema.The development of lymphedema consists of local inflammation,the fibrosis of lymphatic vessels,and the deposition of adipose fat.Existing animal models do not mimic the chronic inflammation environment,therefore suitable models are required in further studies.Some signal pathways and molecular mechanisms in physiological and pathological lymphagiogenesis remain unclear.In previous animal and human trials,ADSC therapy reduced edema in varying degrees.A larger number of trials with larger samples and longer follow-up periods are required to verify the efficiency and feasibility of ADSC therapy.ADSCs are of easy availability and immune exemption,making them a candidate for lymphedema treatment.Whether ADSCs enhance malignant characteristics or trigger the malignant change deserves further exploration and study before ADSC therapy can be made widely available.
基金financially supported by the National Natural Science Foundation of China(No.51474161)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources