Sodium-ion batteries(NIBs)have emerged as a promising alternative to commercial lithium-ion batteries(LIBs)due to the similar properties of the Li and Na elements as well as the abundance and accessibility of Na resou...Sodium-ion batteries(NIBs)have emerged as a promising alternative to commercial lithium-ion batteries(LIBs)due to the similar properties of the Li and Na elements as well as the abundance and accessibility of Na resources.Most of the current research has been focused on the half-cell system(using Na metal as the counter electrode)to evaluate the performance of the cathode/anode/electrolyte.The relationship between the performance achieved in half cells and that obtained in full cells,however,has been neglected in much of this research.Additionally,the trade-off in the relationship between electrochemical performance and cost needs to be given more consideration.Therefore,systematic and comprehensive insights into the research status and key issues for the full-cell system need to be gained to advance its commercialization.Consequently,this review evaluates the recent progress based on various cathodes and highlights the most significant challenges for full cells.Several strategies have also been proposed to enhance the electrochemical performance of NIBs,including designing electrode materials,optimizing electrolytes,sodium compensation,and so forth.Finally,perspectives and outlooks are provided to guide future research on sodium-ion full cells.展开更多
Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages...Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.展开更多
Metal tellurides(MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity a...Metal tellurides(MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates(K-polytellurides, K-pTe_(x)) are rarely mentioned. Herein,we propose a novel structural engineering strategy to confine ultrafine CoTe_(2) nanodots in hierarchical nanogrid-in-nanofiber carbon substrates(CoTe_(2)@NC@NSPCNFs) for smooth immobilization of K-pTe_(x) and highly reversible conversion of CoTe_(2) by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTe_(x)(K_(5)Te_(3) and K_(2)Te), as well as verifying the robust physical barrier and the strong chemisorption of K_(5)Te_(3) and K_(2)Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTe_(x), provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights(3500 cycles at 2.0 A g^(-1)). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTe_(x) in the design of ultralong-cycling MTe anodes for advanced PIBs.展开更多
Background Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia,which suggested that the current level and form of iron supplementation in boar diets may be...Background Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia,which suggested that the current level and form of iron supplementation in boar diets may be inappropriate.Therefore,56 healthy Topeka E line boars aged 15–21 months were randomly divided into 5 groups:basal diet supplemented with 96 mg/kg ferrous sulfate(FeSO_(4))and 54 mg/kg glycine chelated iron(Gly-Fe,control);80 mg/kg or 115 mg/kg Gly-Fe;80 mg/kg or 115 mg/kg methionine hydroxyl analogue chelated iron(MHA-Fe,from CalimetFe)for 16 weeks.The effects of dietary iron supplementation with different sources and levels on semen quality in boars were investigated.Results 1)Serum Fe and hemoglobin concentrations were not affected by reduced dietary iron levels in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups compared with the control group(P>0.05).2)Serum interleukin-6(IL-6)and sperm malondialdehyde(MDA)levels in the 80 mg/kg or 115 mg/kg MHA-Fe groups were lower than those in the control group(P<0.05),and higher serum superoxide dismutase levels and lower MDA levels in the 115 mg/kg MHA-Fe group(P<0.05).3)Boars in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups had lower serum hepcidin(P<0.01),ferritin(P<0.05),and transferrin receptor(P<0.01)concentrations,and boars in the 115 mg/kg MHA-Fe group had higher seminal plasma Fe concentrations compared with the control group.4)Boars in the 80 mg/kg and 115 mg/kg MHA-Fe groups had lower abnormal sperm rate and in situ oscillating sperm ratio compared to the control group at weeks 12 and/or 16 of the trial.However,the effect of Gly-Fe on improving semen quality in boars was not evident.5)Serum IL-6 level was positively correlated with hepcidin concentration(P<0.05),which in turn was significantly positively correlated with abnormal sperm rate(P<0.05).Furthermore,significant correlations were also found between indicators of iron status and oxidative stress and semen quality parameters.Conclusions Dietary supplementation with 80 mg/kg or 115 mg/kg MHA-Fe did not induce iron deficiency,but rather reduced serum inflammatory levels and hepcidin concentration,alleviated oxidative stress,increased body iron utilization,and improved semen quality in adult boars.展开更多
Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume di...Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume distortion,structural collapse,and ionic conduction interruption upon cycling.Herein,a hierarchical array-like nanofiber structure was designed to address these limitations by combining architecture engineering and anion tuning strategy,in which SbPO_(4-x) with oxygen vacancy nanosheet arrays are anchored on the surface of interwoven carbon nanofibers(SbPO_(4-x)@CNFs).In particular,bulky PO_(4)^(3-) anions mitigate the large volume distortion and generate Na_(3)PO_(4) with high ionic conductivity,collectively improving cyclic stability and ionic transport efficiency.The abundant oxygen vacancies substantially boost the intrinsic electronic conductivity of SbPO_4,further accelerating the reaction dynamics.In addition,hierarchical fibrous structures provide abundant active sites,construct efficient conducting networks,and enhance the electron/ion transport capacity.Benefiting from the advanced structural design,the SbPO_(4-x)@CNFs electrodes exhibit outstanding cycling stability(1000 cycles at 1.0 A g^(-1) with capacity decay of 0.05% per cycle) and rapid sodium storage performance(293.8 mA h g^(-1) at 5.0 A g^(-1)).Importantly,systematic in-/ex-situ techniques have revealed the "multi-step conversion-alloying" reaction process and the "battery-capacitor dual-mode" sodium-storage mechanism.This work provides valuable insights into the design of anode materials for advanced SIBs with elevated stability and superior rate performance.展开更多
Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to...Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness.Graphite anodes face challenges,however,in extreme safety-demanding situations,such as airplanes and passenger ships.The lithiation of graphite can potentially form lithium dendrites at low temperatures,causing short circuits.Additionally,the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte,initiating thermal runaway.This review introduces two promising high-safety anode materials,Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7).Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte,resulting in reduced heat generation and significantly lower probabilities of thermal runaway.Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7)offer enhanced safety characteristics compared to graphite,making them suitable for applications with stringent safety requirements.This review provides a comprehensive overview of Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7),focusing on their material properties and practical applicability.It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs,addressing the challenges and opportunities associated with their implementation in real-world applications.展开更多
The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with di...The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with different exposed ratios of[003]in structural attenuation has not been clarified.Herein,we have unraveled comprehensively the structural decay difference for Ni-rich cathodes’primary particles with the different percentages of exposed[003]by regulating the precursor coprecipitation process.The findings based on structural characterization,first-principles calculations,finite element analysis,and electrochemical test reveal that the length and width of particles represent[110]and[003]directions,respectively,and show that cathode particles with a higher[110]/[003]ratio can effectively inhibit structure degradation and intergranular/intragranular crack formation owing to the low oxygen vacancy formation energy on(003)planes and the small local stress on secondary/primary particles.This study may provide guidance for the structural design of layered cathodes.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
A healthy intestine plays an important role in the growth and development of farm animals.In small intestine,Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells(ISCs).Al...A healthy intestine plays an important role in the growth and development of farm animals.In small intestine,Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells(ISCs).Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders,little is known about Paneth cells in farm animals.Most farm animals possess Paneth cells in their small intestine,as identified by various staining methods,and Paneth cells of various livestock species exhibit noticeable differences in cell shape,granule number,and intestinal distribution.Paneth cells in farm animals and their antimicrobial peptides(AMPs)are susceptible to multiple factors such as dietary nutrients and intestinal infection.Thus,the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health.This review first summarizes the current status of Paneth cells in pig,cattle,sheep,horse,chicken and rabbit,and points out future directions for the investigation of Paneth cells in the reviewed animals.展开更多
Recently,object detection based on convolutional neural networks(CNNs)has developed rapidly.The backbone networks for basic feature extraction are an important component of the whole detection task.Therefore,we presen...Recently,object detection based on convolutional neural networks(CNNs)has developed rapidly.The backbone networks for basic feature extraction are an important component of the whole detection task.Therefore,we present a new feature extraction strategy in this paper,which name is DSAFF-Net.In this strategy,we design:1)a sandwich attention feature fusion module(SAFF module).Its purpose is to enhance the semantic information of shallow features and resolution of deep features,which is beneficial to small object detection after feature fusion.2)to add a new stage called D-block to alleviate the disadvantages of decreasing spatial resolution when the pooling layer increases the receptive field.The method proposed in the new stage replaces the original method of obtaining the P6 feature map and uses the result as the input of the regional proposal network(RPN).In the experimental phase,we use the new strategy to extract features.The experiment takes the public dataset of Microsoft Common Objects in Context(MS COCO)object detection and the dataset of Corona Virus Disease 2019(COVID-19)image classification as the experimental object respectively.The results show that the average recognition accuracy of COVID-19 in the classification dataset is improved to 98.163%,and small object detection in object detection tasks is improved by 4.0%.展开更多
BACKGROUND Total mesorectal excision along the“holy plane”is the only radical surgery for rectal cancer,regardless of tumor size,localization or even tumor stage.However,according to the concept of membrane anatomy,...BACKGROUND Total mesorectal excision along the“holy plane”is the only radical surgery for rectal cancer,regardless of tumor size,localization or even tumor stage.However,according to the concept of membrane anatomy,multiple fascial spaces around the rectum could be used as the surgical plane to achieve radical resection.AIM To propose a new membrane anatomical and staging-oriented classification system for tailoring the radicality during rectal cancer surgery.METHODS A three-dimensional template of the member anatomy of the pelvis was established,and the existing anatomical nomenclatures were clarified by cadaveric dissection study and laparoscopic surgical observation.Then,we suggested a new and simple classification system for rectal cancer surgery.For simplification,the classification was based only on the lateral extent of resection.RESULTS The fascia propria of the rectum,urogenital fascia,vesicohypogastric fascia and parietal fascia lie side by side around the rectum and form three spaces(medial,middle and lateral),and blood vessels and nerves are precisely positioned in the fascia or space.Three types of radical surgery for rectal cancer are described,as are a few subtypes that consider nerve preservation.The surgical planes of the proposed radical surgeries(types A,B and C)correspond exactly to the medial,middle,and lateral spaces,respectively.CONCLUSION Three types of radical surgery can be precisely defined based on membrane anatomy,including nerve-sparing procedures.Our classification system may offer an optimal tool for tailoring rectal cancer surgery.展开更多
[Objectives]A codominance functional marker of the broad-spectrum bacterial blight resistance gene,Xa7,of rice was identified for accurate detection,generation tracking,and differentiation between homozygous and hemiz...[Objectives]A codominance functional marker of the broad-spectrum bacterial blight resistance gene,Xa7,of rice was identified for accurate detection,generation tracking,and differentiation between homozygous and hemizygous genotypes of the gene.[Methods]A potential functional marker containing four primers was designed using Premier 5 software and based on the differences on the sequences of Xa7,xa7,and allele-free genomes.The molecular distinctness of the marker in different materials was verified by PCR.Three crossbreed lines of Xa7 and their parents were inoculated with seven bacterial blight strains at the booting stage to examine the affected agronomic traits at maturation.[Results]The homozygous R084 of Xa7 could be amplified into a 91 bp band and the Nip free of allele with a 153 bp band,while the heterozygote Nip/R084,91 bp and 153 bp bands.The candidate codominance marker,Xa7fun,amplified fragments that matched the predicted target bands.No 91 bp fragment was amplified from 18 germplasms of varied types,indicating a lack of Xa7 in them.Whereas Ry1,Ry2 and Ry3 had a 91 bp band,suggesting the inclusion of homozygous Xa7.Under an elevated temperature,Huazhan responded to the seven bacterial blight pathogens as highly susceptible(HS),intermediate susceptible(MS),or susceptible(S);R084 to six of the seven pathogens(HNA1-4,FuJ,GDA2,GD1358,PX086,and YN24)as highly resistant(HR),intermediate resistant(MR)or resistant(R);Ry-1 to five pathogens(GDA2,HNA1-4,FuJ,GD1358,and YN24)as HR or MR;Ry-2 to five pathogens(GDA2,GD1358,HNA1-4,PXO86,and YN24)as HR or R;and Ry-3 to 6 pathogens(HNA1-4,FuJ,GDA2,GD1358,PXO86,and YN24)as HR or MR.Therefore,the infiltration of Xa7 in the improved crossbred lines RY-1,RY-2,and RY-3 significantly accentuated the blight resistance of Huazhan.[Conclusions]Homozygous or hemizygous Xa7 could be accurately differentiated by the currently identified codominance functional marker Xa7 fun.The Xa7 introgression did not significantly alter the critical agronomic traits in the hybridization from generation to generation and could be safely applied in breeding rice varieties with bacterial blight resistance.展开更多
PATIENTS with chronic heart failure(CHF)have a high incidence of atrial/ventricular arrhythmias which seriously affect life span and quality of life.Cardiac resynchronization therapy(CRT)can improve cardiac function a...PATIENTS with chronic heart failure(CHF)have a high incidence of atrial/ventricular arrhythmias which seriously affect life span and quality of life.Cardiac resynchronization therapy(CRT)can improve cardiac function and reverse myocardial remodeling,therefore improving the quality of life and reducing mortality.CRT with Home-Monitoring(HM)can be used to monitor cardiac arrhythmias and other展开更多
The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M...The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M^ZnaRE?phases with an increase in Zn content from 0.9 at.%to 1.8 at.%,and the ultimate tensile strength(UTS)increased from 229 MPa to 248 MPa.With solution treatment at 480°C,the content of the LPSO phase and strength sharply decreased in the Mg-1.8Zn-0.8Y-0.8Gd alloy,whereas this change was not significantly observed in the Mg-0.9Zn-O.8Y-O.8Gd alloy.After solution treatment,the elongation significantly improved and the UTS sharply decreased in both alloys.The lamellar and filminess LPSO phases were observed with aging treatment at 200℃.Moreover,the strengthening efficiency of lamellar and filminess LPSO phases was lower than that of the block LPSO phases.Therefore,the UTS of the T6 state was lower than that of the as-cast alloy.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:51971124,52102285,52171217,52250710680。
文摘Sodium-ion batteries(NIBs)have emerged as a promising alternative to commercial lithium-ion batteries(LIBs)due to the similar properties of the Li and Na elements as well as the abundance and accessibility of Na resources.Most of the current research has been focused on the half-cell system(using Na metal as the counter electrode)to evaluate the performance of the cathode/anode/electrolyte.The relationship between the performance achieved in half cells and that obtained in full cells,however,has been neglected in much of this research.Additionally,the trade-off in the relationship between electrochemical performance and cost needs to be given more consideration.Therefore,systematic and comprehensive insights into the research status and key issues for the full-cell system need to be gained to advance its commercialization.Consequently,this review evaluates the recent progress based on various cathodes and highlights the most significant challenges for full cells.Several strategies have also been proposed to enhance the electrochemical performance of NIBs,including designing electrode materials,optimizing electrolytes,sodium compensation,and so forth.Finally,perspectives and outlooks are provided to guide future research on sodium-ion full cells.
基金Science Development Foundation of Hubei University of Science&Technology,Grant/Award Numbers:2021F005,2021ZX14,2020TD01,2021ZX0Xianning City Program of Science&Technology,Grant/Award Number:2022ZRKX051Hubei University of Science and Technology Doctoral Research Initiation Project,Grant/Award Number:BK202217。
文摘Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51920105004, 52102223, 52002081)。
文摘Metal tellurides(MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates(K-polytellurides, K-pTe_(x)) are rarely mentioned. Herein,we propose a novel structural engineering strategy to confine ultrafine CoTe_(2) nanodots in hierarchical nanogrid-in-nanofiber carbon substrates(CoTe_(2)@NC@NSPCNFs) for smooth immobilization of K-pTe_(x) and highly reversible conversion of CoTe_(2) by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTe_(x)(K_(5)Te_(3) and K_(2)Te), as well as verifying the robust physical barrier and the strong chemisorption of K_(5)Te_(3) and K_(2)Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTe_(x), provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights(3500 cycles at 2.0 A g^(-1)). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTe_(x) in the design of ultralong-cycling MTe anodes for advanced PIBs.
基金China Agriculture Research System(CARS-36)Major Project of Technical Innovation in Hubei Province(No.2022BBA0056)+1 种基金Dekon-Huazhong Agricultural University Project Co-operation AgreementSchool-Enterprise Cooperation Project-Micronutrient Nutrition and Mechanism of Breeding Pigs。
文摘Background Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia,which suggested that the current level and form of iron supplementation in boar diets may be inappropriate.Therefore,56 healthy Topeka E line boars aged 15–21 months were randomly divided into 5 groups:basal diet supplemented with 96 mg/kg ferrous sulfate(FeSO_(4))and 54 mg/kg glycine chelated iron(Gly-Fe,control);80 mg/kg or 115 mg/kg Gly-Fe;80 mg/kg or 115 mg/kg methionine hydroxyl analogue chelated iron(MHA-Fe,from CalimetFe)for 16 weeks.The effects of dietary iron supplementation with different sources and levels on semen quality in boars were investigated.Results 1)Serum Fe and hemoglobin concentrations were not affected by reduced dietary iron levels in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups compared with the control group(P>0.05).2)Serum interleukin-6(IL-6)and sperm malondialdehyde(MDA)levels in the 80 mg/kg or 115 mg/kg MHA-Fe groups were lower than those in the control group(P<0.05),and higher serum superoxide dismutase levels and lower MDA levels in the 115 mg/kg MHA-Fe group(P<0.05).3)Boars in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups had lower serum hepcidin(P<0.01),ferritin(P<0.05),and transferrin receptor(P<0.01)concentrations,and boars in the 115 mg/kg MHA-Fe group had higher seminal plasma Fe concentrations compared with the control group.4)Boars in the 80 mg/kg and 115 mg/kg MHA-Fe groups had lower abnormal sperm rate and in situ oscillating sperm ratio compared to the control group at weeks 12 and/or 16 of the trial.However,the effect of Gly-Fe on improving semen quality in boars was not evident.5)Serum IL-6 level was positively correlated with hepcidin concentration(P<0.05),which in turn was significantly positively correlated with abnormal sperm rate(P<0.05).Furthermore,significant correlations were also found between indicators of iron status and oxidative stress and semen quality parameters.Conclusions Dietary supplementation with 80 mg/kg or 115 mg/kg MHA-Fe did not induce iron deficiency,but rather reduced serum inflammatory levels and hepcidin concentration,alleviated oxidative stress,increased body iron utilization,and improved semen quality in adult boars.
基金financially supported by the National Natural Science Foundation of China(52102223,51920105004)。
文摘Antimony(Sb)-ba sed anode materials are feasible candidates for sodium-ion batteries(SIBs) due to their high theoretical specific capacity and excellent electrical conductivity.However,they still suffer from volume distortion,structural collapse,and ionic conduction interruption upon cycling.Herein,a hierarchical array-like nanofiber structure was designed to address these limitations by combining architecture engineering and anion tuning strategy,in which SbPO_(4-x) with oxygen vacancy nanosheet arrays are anchored on the surface of interwoven carbon nanofibers(SbPO_(4-x)@CNFs).In particular,bulky PO_(4)^(3-) anions mitigate the large volume distortion and generate Na_(3)PO_(4) with high ionic conductivity,collectively improving cyclic stability and ionic transport efficiency.The abundant oxygen vacancies substantially boost the intrinsic electronic conductivity of SbPO_4,further accelerating the reaction dynamics.In addition,hierarchical fibrous structures provide abundant active sites,construct efficient conducting networks,and enhance the electron/ion transport capacity.Benefiting from the advanced structural design,the SbPO_(4-x)@CNFs electrodes exhibit outstanding cycling stability(1000 cycles at 1.0 A g^(-1) with capacity decay of 0.05% per cycle) and rapid sodium storage performance(293.8 mA h g^(-1) at 5.0 A g^(-1)).Importantly,systematic in-/ex-situ techniques have revealed the "multi-step conversion-alloying" reaction process and the "battery-capacitor dual-mode" sodium-storage mechanism.This work provides valuable insights into the design of anode materials for advanced SIBs with elevated stability and superior rate performance.
基金financially supported by an Australian Research Council(ARC)Discovery Project(DP180101453)an Australian Renewable Energy Agency(ARENA)Project(G00849)+1 种基金the 2021 Ludo Frevel Crystal ography Scholarship Awardan AINSE Ltd.Postgraduate Research Award(PGRA)
文摘Lithium-ion batteries(LIBs)play a pivotal role in today's society,with widespread applications in portable electronics,electric vehicles,and smart grids.Commercial LIBs predominantly utilize graphite anodes due to their high energy density and cost-effectiveness.Graphite anodes face challenges,however,in extreme safety-demanding situations,such as airplanes and passenger ships.The lithiation of graphite can potentially form lithium dendrites at low temperatures,causing short circuits.Additionally,the dissolution of the solid-electrolyte-interphase on graphite surfaces at high temperatures can lead to intense reactions with the electrolyte,initiating thermal runaway.This review introduces two promising high-safety anode materials,Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7).Both materials exhibit low tendencies towards lithium dendrite formation and have high onset temperatures for reactions with the electrolyte,resulting in reduced heat generation and significantly lower probabilities of thermal runaway.Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7)offer enhanced safety characteristics compared to graphite,making them suitable for applications with stringent safety requirements.This review provides a comprehensive overview of Li_(4)Ti_(5)O_(12)and TiNb_(2)O_(7),focusing on their material properties and practical applicability.It aims to contribute to the understanding and development of high-safety anode materials for advanced LIBs,addressing the challenges and opportunities associated with their implementation in real-world applications.
基金National Natural Science Foundation of China,Grant/Award Numbers:20A20145,21878195,22108183,21975154,22179078Distinguished Young Foundation of Sichuan Province,Grant/Award Number:2020JDJQ0027+7 种基金2020 Strategic cooperation project between Sichuan University and Zigong Municipal People's Government,Grant/Award Number:2020CDZG-09State Key Laboratory of Polymer Materials Engineering,Grant/Award Number:sklpme2020-3-02Sichuan Provincial Department of Science and Technology,Grant/Award Numbers:2020YFG0471,2020YFG0022Sichuan Province Science and Technology Achievement Transfer and Trans-formation Project,Grant/Award Number:21ZHSF0111Sichuan University postdoctoral interdisciplinary Innovation Fund,the State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Grant/Award Number:EIPE22208National Postdoctoral Program for Innovative Talents,Grant/Award Number:BX20200222China Postdoctoral Science Foundation,Grant/Award Numbers:2020M682878,2022M712231Start-up funding of Chemistry and Chemical Engineering Guangdong Laboratory,Grant/Award Number:2122010。
文摘The crystal plane plays a very important role in the properties of Ni-rich cathodes.[003]crystallographic texture regulation has been proven to improve structural stability,and yet,the discrepancy of particles with different exposed ratios of[003]in structural attenuation has not been clarified.Herein,we have unraveled comprehensively the structural decay difference for Ni-rich cathodes’primary particles with the different percentages of exposed[003]by regulating the precursor coprecipitation process.The findings based on structural characterization,first-principles calculations,finite element analysis,and electrochemical test reveal that the length and width of particles represent[110]and[003]directions,respectively,and show that cathode particles with a higher[110]/[003]ratio can effectively inhibit structure degradation and intergranular/intragranular crack formation owing to the low oxygen vacancy formation energy on(003)planes and the small local stress on secondary/primary particles.This study may provide guidance for the structural design of layered cathodes.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
基金the Joint Funds of the National Natural Science Foundation of China(U22A20511)China Agriculture Research System(CARS-36)Hubei Provincial Key R&D Program(2021BBA083).
文摘A healthy intestine plays an important role in the growth and development of farm animals.In small intestine,Paneth cells are well known for their regulation of intestinal microbiota and intestinal stem cells(ISCs).Although there has been a lot of studies and reviews on human and murine Paneth cells under intestinal homeostasis or disorders,little is known about Paneth cells in farm animals.Most farm animals possess Paneth cells in their small intestine,as identified by various staining methods,and Paneth cells of various livestock species exhibit noticeable differences in cell shape,granule number,and intestinal distribution.Paneth cells in farm animals and their antimicrobial peptides(AMPs)are susceptible to multiple factors such as dietary nutrients and intestinal infection.Thus,the comprehensive understanding of Paneth cells in different livestock species will contribute to the improvement of intestinal health.This review first summarizes the current status of Paneth cells in pig,cattle,sheep,horse,chicken and rabbit,and points out future directions for the investigation of Paneth cells in the reviewed animals.
基金the National Natural Science Foundation of China under grant 62172059 and 62072055Hunan Provincial Natural Science Foundations of China under Grant 2020JJ4626+2 种基金Scientific Research Fund of Hunan Provincial Education Department of China under Grant 19B004“Double First-class”International Cooperation and Development Scientific Research Project of Changsha University of Science and Technology under Grant 2018IC25the Young Teacher Growth Plan Project of Changsha University of Science and Technology under Grant 2019QJCZ076.
文摘Recently,object detection based on convolutional neural networks(CNNs)has developed rapidly.The backbone networks for basic feature extraction are an important component of the whole detection task.Therefore,we present a new feature extraction strategy in this paper,which name is DSAFF-Net.In this strategy,we design:1)a sandwich attention feature fusion module(SAFF module).Its purpose is to enhance the semantic information of shallow features and resolution of deep features,which is beneficial to small object detection after feature fusion.2)to add a new stage called D-block to alleviate the disadvantages of decreasing spatial resolution when the pooling layer increases the receptive field.The method proposed in the new stage replaces the original method of obtaining the P6 feature map and uses the result as the input of the regional proposal network(RPN).In the experimental phase,we use the new strategy to extract features.The experiment takes the public dataset of Microsoft Common Objects in Context(MS COCO)object detection and the dataset of Corona Virus Disease 2019(COVID-19)image classification as the experimental object respectively.The results show that the average recognition accuracy of COVID-19 in the classification dataset is improved to 98.163%,and small object detection in object detection tasks is improved by 4.0%.
基金the National Natural Science Foundation of China,No.81874201Technology Plan Project,No.20Y11908300+2 种基金Shanghai Medical Key Specialty Construction Plan,No.ZK2019A19Shanghai Municipal Commission of Health and Family Planning,No.202040122and Shanghai Pujiang Program,No.21PJD066.
文摘BACKGROUND Total mesorectal excision along the“holy plane”is the only radical surgery for rectal cancer,regardless of tumor size,localization or even tumor stage.However,according to the concept of membrane anatomy,multiple fascial spaces around the rectum could be used as the surgical plane to achieve radical resection.AIM To propose a new membrane anatomical and staging-oriented classification system for tailoring the radicality during rectal cancer surgery.METHODS A three-dimensional template of the member anatomy of the pelvis was established,and the existing anatomical nomenclatures were clarified by cadaveric dissection study and laparoscopic surgical observation.Then,we suggested a new and simple classification system for rectal cancer surgery.For simplification,the classification was based only on the lateral extent of resection.RESULTS The fascia propria of the rectum,urogenital fascia,vesicohypogastric fascia and parietal fascia lie side by side around the rectum and form three spaces(medial,middle and lateral),and blood vessels and nerves are precisely positioned in the fascia or space.Three types of radical surgery for rectal cancer are described,as are a few subtypes that consider nerve preservation.The surgical planes of the proposed radical surgeries(types A,B and C)correspond exactly to the medial,middle,and lateral spaces,respectively.CONCLUSION Three types of radical surgery can be precisely defined based on membrane anatomy,including nerve-sparing procedures.Our classification system may offer an optimal tool for tailoring rectal cancer surgery.
基金Supported by Changde Science and Technology Transformation and Promotion Service Project[2019][CCN][0051-000].
文摘[Objectives]A codominance functional marker of the broad-spectrum bacterial blight resistance gene,Xa7,of rice was identified for accurate detection,generation tracking,and differentiation between homozygous and hemizygous genotypes of the gene.[Methods]A potential functional marker containing four primers was designed using Premier 5 software and based on the differences on the sequences of Xa7,xa7,and allele-free genomes.The molecular distinctness of the marker in different materials was verified by PCR.Three crossbreed lines of Xa7 and their parents were inoculated with seven bacterial blight strains at the booting stage to examine the affected agronomic traits at maturation.[Results]The homozygous R084 of Xa7 could be amplified into a 91 bp band and the Nip free of allele with a 153 bp band,while the heterozygote Nip/R084,91 bp and 153 bp bands.The candidate codominance marker,Xa7fun,amplified fragments that matched the predicted target bands.No 91 bp fragment was amplified from 18 germplasms of varied types,indicating a lack of Xa7 in them.Whereas Ry1,Ry2 and Ry3 had a 91 bp band,suggesting the inclusion of homozygous Xa7.Under an elevated temperature,Huazhan responded to the seven bacterial blight pathogens as highly susceptible(HS),intermediate susceptible(MS),or susceptible(S);R084 to six of the seven pathogens(HNA1-4,FuJ,GDA2,GD1358,PX086,and YN24)as highly resistant(HR),intermediate resistant(MR)or resistant(R);Ry-1 to five pathogens(GDA2,HNA1-4,FuJ,GD1358,and YN24)as HR or MR;Ry-2 to five pathogens(GDA2,GD1358,HNA1-4,PXO86,and YN24)as HR or R;and Ry-3 to 6 pathogens(HNA1-4,FuJ,GDA2,GD1358,PXO86,and YN24)as HR or MR.Therefore,the infiltration of Xa7 in the improved crossbred lines RY-1,RY-2,and RY-3 significantly accentuated the blight resistance of Huazhan.[Conclusions]Homozygous or hemizygous Xa7 could be accurately differentiated by the currently identified codominance functional marker Xa7 fun.The Xa7 introgression did not significantly alter the critical agronomic traits in the hybridization from generation to generation and could be safely applied in breeding rice varieties with bacterial blight resistance.
文摘PATIENTS with chronic heart failure(CHF)have a high incidence of atrial/ventricular arrhythmias which seriously affect life span and quality of life.Cardiac resynchronization therapy(CRT)can improve cardiac function and reverse myocardial remodeling,therefore improving the quality of life and reducing mortality.CRT with Home-Monitoring(HM)can be used to monitor cardiac arrhythmias and other
文摘The mechanical properties and microstructure were investigated under different Zn content and heat treatment conditions in a Mg-Zn-YGd cast alloy.A part of the long period stacking order(LPSO)phases transformed to W-M^ZnaRE?phases with an increase in Zn content from 0.9 at.%to 1.8 at.%,and the ultimate tensile strength(UTS)increased from 229 MPa to 248 MPa.With solution treatment at 480°C,the content of the LPSO phase and strength sharply decreased in the Mg-1.8Zn-0.8Y-0.8Gd alloy,whereas this change was not significantly observed in the Mg-0.9Zn-O.8Y-O.8Gd alloy.After solution treatment,the elongation significantly improved and the UTS sharply decreased in both alloys.The lamellar and filminess LPSO phases were observed with aging treatment at 200℃.Moreover,the strengthening efficiency of lamellar and filminess LPSO phases was lower than that of the block LPSO phases.Therefore,the UTS of the T6 state was lower than that of the as-cast alloy.