Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w...Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.展开更多
Accumulating evidence has indicated that long non-coding RNAs(lncRNAs)play critical roles in the development and progression of cancers,including esophageal squamous cell carcinoma(ESCC).However,the mechanisms of lncR...Accumulating evidence has indicated that long non-coding RNAs(lncRNAs)play critical roles in the development and progression of cancers,including esophageal squamous cell carcinoma(ESCC).However,the mechanisms of lncRNAs in ESCC are still incompletely understood and therapeutic attempts for in vivo targeting cancer-associated lncRNA remain a challenge.By RNA-sequencing analysis,we identified that LLNLR-299G3.1 was a novel ESCC-associated lncRNA.LLNLR-299G3.1 was up-regulated in ESCC tissues and cells and promoted ESCC cell proliferation and invasion.Silencing of LLNLR-299G3.1 with ASO(antisense oligonucleotide)resulted in opposite effects.Mechanistically,LLNLR-299G3.1 bound to cancerassociated RNA binding proteins and regulated the expression of cancer-related genes,including OSM,TNFRSF4,HRH3,and SSTR3.ChIRP-seq(chromatin isolation by RNA purification and sequencing)revealed that these genes contained enriched chromatin binding sites for LLNLR-299G3.1.Rescue experiments confirmed that the effects of LLNLR-299G3.1 on ESCC cell proliferation were dependent on interaction with HRH3 and TNFRSF4.Therapeutically,intravenous delivery of placental chondroitin sulfate A binding peptide-coated nanoparticles containing antisense oligonucleotide(pICSA-BP-ANPs)strongly inhibited ESCC tumor growth and significantly improved animal survival in vivo.Overall,our results suggest that LLNLR-299G3.1 promotes ESCC malignancy through regulating gene-chromatin interactions and targeting ESCC by pICSA-BP-ANPs may be an effective strategy for the treatment of lncRNA-associated ESCC.展开更多
Partial genetically encoded 4-hy-droxybenzylidene-imidazolinone(HBI)-type chromophores are new promising fluorescent probes,which are suitable for imaging and detection of living cells.How-ever,the lack of infrared ch...Partial genetically encoded 4-hy-droxybenzylidene-imidazolinone(HBI)-type chromophores are new promising fluorescent probes,which are suitable for imaging and detection of living cells.How-ever,the lack of infrared chro-mophores hinders the develop-ment seriously.Here more than 30 HBI-type chromophores with reg-ular structure modifications were employed and typical spectral redshift change laws and mechanisms were investigated by quantum methods.Results show that both one-photon spectrum(OPS,absorption/emission)and two-photon absorption(TPA)can achieve large redshift via either extending conjugated lengths of frag-3 or enlarging conjugated areas of frag-1 of HBI skeleton.Spectral redshifts of all chromophores are highly related to intramolecular charge transfer(ICT),but neutral ones are closely related to the total ICT or electron-accept-ing-numbers of frag-3,and the high correlative factor of anions is the aromaticity of frag-2 bridge.The frag-2 bridge with high aromaticity can open a reverse charge transfer channel in anion relative to neutral,obtaining significant redshift.Based on analysis,a new 6-hydroxyl-naphthalene-imidazolinone(HNI)series,which have larger conjugated area in frag-1,are pre-dicted.The OPS and TPA of anionic HNI ones acquire about 76−96 nm and 119−146 nm red-shift relative to traditional HBI series respectively as a whole.The longest emission of anionic HNI-4 realizes more 244 nm redshift relative to HBI-1.Our work clarifies worthy spectral reg-ularities and redshift mechanisms of HBI-type chromophores and provides valuable design strategy for infrared chromophores synthesis in experiment.展开更多
A biparental soybean population of 364 recombinant inbred lines(RILs)derived from Zhongdou 41×ZYD02.878 was used to identify quantitative trait loci(QTL)associated with hundred-seed weight(100-SW),pod length(PL),...A biparental soybean population of 364 recombinant inbred lines(RILs)derived from Zhongdou 41×ZYD02.878 was used to identify quantitative trait loci(QTL)associated with hundred-seed weight(100-SW),pod length(PL),and pod width(PW).100-SW,PL,and PW showed moderate correlations among one another,and 100-SW was correlated most strongly with PW(0.64–0.74).Respectively 74,70,75 and19 QTL accounting for 38.7%–78.8%of total phenotypic variance were identified by inclusive composite interval mapping,restricted two-stage multi-locus genome-wide association analysis,3 variancecomponent multi-locus random-SNP-effect mixed linear model analysis,and conditional genome-wide association analysis.Of these QTL,189 were novel,and 24 were detected by multiple methods.Six loci were associated with 100-SW,PL,and PW and may be pleiotropic loci.A total of 284 candidate genes were identified in colocalizing QTL regions,including the verified gene Seed thickness 1(ST1).Eleven genes with functions involved in pectin biosynthesis,phytohormone,ubiquitin-protein,and photosynthesis pathways were prioritized by examining single nucleotide polymorphism(SNP)variation,calculating genetic differentiation index,and inquiring gene expression.The prediction accuracies of genomic selection(GS)for 100-SW,PL,and PW based on single trait-associated markers reached 0.82,0.76,and 0.86 respectively,but selection index(SI)-assisted GS strategy did not increase GS efficiency and inclusion of trait-associated markers as fixed effects reduced prediction accuracy.These results shed light on the genetic basis of 100-SW,PL,and PW and provide GS models for these traits with potential application in breeding programs.展开更多
Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique ...Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique tradi-tionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production.In this context,determining the optimal concentration of the bubble drainage agent is generally cru-cial for the proper application of this method.In this study,a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a representative gasfield.Dynamic and static experiments were designed with a bubble drainage agent concentration varying in the range 0.3%–0.6%.Using thefield formation water data,the optimal soaking agent concentration was obtained and pressure drop test experiments on the foam carrying capacity were conducted accordingly.These tests have revealed that the optimal foam displacement agent concentration is 0.5%,and the foam quality at the optimum concentration is between 0.78–0.98.A theoretical method for calculating the pressure drop at the optimum soak-away concentration based on experimental data has also been introduced.The error of the proposed method is within 15%compared to the experimental measured value,demonstrating that it is highly accurate and simple.展开更多
A microwave-induced thermoacoustic imaging(MITAT)system is a non-destructive physical medical imaging method that combines the advantages of the high contrast of microwave imaging and the high resolution of ultrasound...A microwave-induced thermoacoustic imaging(MITAT)system is a non-destructive physical medical imaging method that combines the advantages of the high contrast of microwave imaging and the high resolution of ultrasound imaging.It uses the microwave as the excitation source and ultrasound as the information carrier.When different kinds of biological tissue absorb electromagnetic energy,it results in localized temperature rises.The thermal expansion will induce ultrasonic signals(i.e.,thermoacoustic signals),known as the thermoacoustic effect.The microwave absorption image of the sample can be reconstructed by algorithm processing.The MITAT contrast depends on different dielectric parameters of different kinds of tissue.We introduce the developed system and its application.In addition,the challenges and prospects of MITAT for further development are discussed.展开更多
AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with the...AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.展开更多
AIM:To study the methods of preparing the magnetic nano-microspheres of Fe2O3 and As2O3/Fe2O3 complexes and their therapeutic effects with magnetic fluid hyperthermia(MFH). METHODS:Nanospheres were prepared by chemica...AIM:To study the methods of preparing the magnetic nano-microspheres of Fe2O3 and As2O3/Fe2O3 complexes and their therapeutic effects with magnetic fluid hyperthermia(MFH). METHODS:Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed.Hemolysis,micronucleus,cell viability,and LD50 along with other in vivo tests were performed to evaluate the Fe2O3 microsphere biocompatibility.The inhibition ratio of tumors after Fe2O3 and As2O3/Fe2O3 injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. RESULTS:Fe2O3 and As2O3/Fe2O3 particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope.Upon exposure to an alternating magnetic field(AMF),the temperature of the suspension of magnetic particles increased to 41-51℃,depending on different particle concentrations,and remained stable thereafter.Nanosized Fe2O3 microspheres are a new kind of biomaterial without cytotoxic effects.The LD50 of both Fe2O3 and As2O3/Fe2O3 in mice was higher than 5 g/kg.One to four weeks after Fe2O3 and As2O3/Fe2O3 complex injections into healthy pig livers,no significant differences were found in serum AST,ALT,BUN and Cr levels among thepigs of all groups(P>0.05),and no obvious pathological alterations were observed.After exposure to alternating magnetic fields,the inhibition ratio of the tumors was significantly different from controls in the Fe2O3 and As2O3/Fe2O3 groups(68.74% and 82.79%,respectively; P<0.01).Tumors of mice in treatment groups showed obvious necrosis,while normal tissues adjoining the tumor and internal organs did not. CONCLUSION:Fe2O3 and As2O3/Fe2O3 complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore,nanospheres are ideal carriers for tumortargeted therapy.展开更多
Nano-nitramine explosives(RDX.HMX.CL-20) are produced on a bi-directional grinding mill.The scanning electron microscope(SEM)observations show that the prepared particles are semi-spherical,and the narrow size distrib...Nano-nitramine explosives(RDX.HMX.CL-20) are produced on a bi-directional grinding mill.The scanning electron microscope(SEM)observations show that the prepared particles are semi-spherical,and the narrow size distributions are characterized using the laser particle size analyzer.Compared with the micron-sized samples,the nano-products show obvious decrease in friction and impact sensitivities.In the case of shock sensitivities,nano-products have lower values by 59.9%(RDX),56.4%(HMX),and 58.1%(CL-20),respectively.When nano-RDX and nano-HMX are used in plastic bonded explosives(PBX) as alternative materials of micron-sized particles,their shock sensitivities are significantly decreased by 24.5%(RDX) and 22.9%(HMX),and their detonation velocities are increased by about 1.7%.Therefore,it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants(CMDBs) so that some of their properties would be improved.展开更多
AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley...AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley(SD) rats were randomly assigned to a normal control group(group A), a diabetic retinopathy(DR) blank control group(group B), a high-concentration transplantation group(group C), a low-concentration transplantation group(group D) and a placebo transplantation group(group E). The expression of nerve growth factor(NGF)protein in the retinal layers was detected by immunohistochemical staining at 2, 4, 6 and 8wk.RESULTS: The expression of NGF was positive in group A and most positive in the retinal ganglion cell layer. In groups B and E, the expression of NGF was positive 2wk after transplantation and showed an increase in all layers. However, the level of expression had decreased in all layers at 4wk and was significantly reduced at 8wk. In groups C and D, the expression of NGF had increased at 2wk and continued to increase up to 8wk. The level of expression in group C was much higher than that in group D.CONCLUSION: DR can be improved by intravitreal injection of human umbilical mesenchymal stem cells.High concentrations of human umbilical mesenchymal stem cells confer a better protective effect on DR than low concentrations.展开更多
The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma(ICP) source. Measurements are made in an Ar discharge for driving frequency a...The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma(ICP) source. Measurements are made in an Ar discharge for driving frequency at 13.56/2 MHz, and pressures of 0.4-1.2 Pa. In 13.56 MHz discharge, higher electron density(n_e) and higher electron temperature(T_e) are observed in comparison with 2 MHz discharge at 0.6-1.2 Pa. However, slightly higher n_e and T_e are observed in 2 MHz discharge at 0.4 Pa. This observation is explained by enhanced electron heating efficiency due to the resonance between the oscillation of 2 MHz electromagnetic field and electron-neutral collision process at 0.4 Pa. It is also found that the variation of T_edistribution is different in 13.56 and 2 MHz discharge.For ICP at 13.56 MHz, T_eshows an edge-high profile at 0.4-1.2 Pa. For 2 MHz discharge, T_e remains an edge-high distribution at 0.4-0.8 Pa. However, the distribution pattern involves into a center-high profile at 0.9-1.2 Pa. The spatial profiles of n_e remain a center-high shape in both 13.56 and 2 MHz discharges, which indicates the nonlocal kinetics at low pressures. Better uniformity could be achieved by using 2 MHz discharge. The effects of gas pressure on plasma parameters are also examined. An increase in gas pressure necessitates the rise of n_e in both 13.56 and 2 MHz discharges. Meanwhile, T_e drops when gas pressure increases and shows a flatter distribution at higher pressure.展开更多
The current research of wheel force transducer (WFT) mainly focuses on test signal processing and decoupling methods based on signal itself, while the WFT structure optimization research related to decreasing the ma...The current research of wheel force transducer (WFT) mainly focuses on test signal processing and decoupling methods based on signal itself, while the WFT structure optimization research related to decreasing the mass and increase the natural frequency and comprehen- sive sensitivity is not enough. In order to improve the WFT test accuracy, a structure optimization method based on natural frequency and comprehensive sensitivity indicators is put forward. The WPT with 8-beam elastic body is used for the finite element modeling (FEM), in which the fol- lowing variations are taken into consideration: the con- nection type of elastic body with modified rim, the number of connection holes, and the respects of strain beam including the shape, the cross sectional area and the length, etc.. The test results shows that the natural frequency of the connecting block type is increased by 65.5% compared with the connecting seat type of elastic body & modified rim, and the main channel sensitivity is improved as well. The results show that the connecting block type will achieve the best comprehensive performance when the number of connecting holes between the elastic body and the modified rim is 20. And the thinner and longer strain beam with smaller cross section area is preferable within the scope of elastic body mechanical strength. This research proposes a novel structure optimization method for WFT which contributes to improve the measurement performance of WFT.展开更多
CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemi...CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.展开更多
AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(h UCMSCs) on the expression of vascular endothelial growth factor-A(VEGF-A) in blue light injured human retina...AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(h UCMSCs) on the expression of vascular endothelial growth factor-A(VEGF-A) in blue light injured human retinal pigment epithelial(RPE) cells and laser-induced choroidal neovascularization(CNV) in rats.METHODS: Exosomes were isolated from h UCMSCs and characterized by transmission electron microscope and Western blot. MSCs-derived exosomes were cultured with RPE cells exposed to blue light. The m RNA and protein expression of VEGF-A were determined by real time-polymerase chain reaction(PCR) and Western blot, respectively. Immunofluorescence assay was used for the detection of the expression level of VEGF-A. We injected different doses of MSCs-derived exosomes intravitreally to observe and compare their effects in a mouse model of laserinduced retinal injury. The histological structure of CNV in rats was inspected by hematoxylin-eosin(HE) staining and fundus fluorescein angiography. The expression of VEGF-A was detected by immunohistochemistry.RESULTS: Exosomes exhibited the typical characteristic morphology(cup-shaped) and size(diameter between 50 and 150 nm). The exosomes marker, CD63, and h UCMSCs marker, CD90, showed a robust presence. In vitro, MSCsderived exosomes downregulated the m RNA(Exo-L: t=6.485, 7.959, 9.286; Exo-M: t=7.517, 10.170, 13.413; Exo-H: t=10.317, 12.234, 14.592, P〈0.05) and protein(Exo-L: t=2.945, 4.477, 6.657; Exo-M: t=4.713, 6.421, 8.836; Exo-H:t=6.539, 12.194, 12.783; P〈0.05) expression of VEGF-A in RPE cells after blue light stimulation. In vivo, we found that the MSCs-derived exosomes reduced damage, distinctly downregulated VEGF-A(Exo-H: t=0.957, 1.382; P〈0.05), and gradually improved the histological structures of CNV for a better visual function(Exo-L: 0.346, Exo-M: 3.382, Exo-H: 8.571; P〈0.05). CONCLUSION: MSCs-derived exosomes ameliorate blue light stimulation in RPE cells and laser-induced retinal injury via downregulation of VEGF-A.展开更多
A kind of integrated network architecture visible light communication (VLC) and power line communication (PLC) is put forward. This architecture is low cost and easy to implement which overcomes the shortcoming of the...A kind of integrated network architecture visible light communication (VLC) and power line communication (PLC) is put forward. This architecture is low cost and easy to implement which overcomes the shortcoming of the traditional network architecture. Furthermore, the VLC-PLC integration technology is applied to typical power grid business scene, which is substation intelligent inspection. The business process of master station platform is analyzed. During the intelligent inspection, the VLC-PLC system provides voice communication for on-site inspection personnel and management personnel, and position service. The system can ensure the safety and security of power production.展开更多
That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. Th...That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. This study conducted the experiments of phosphorus removal by three coagulants including aluminum chloride, aluminum sulfate and poly aluminum chloride. The results indicated that the poly aluminum chloride is the preferred one that could remove phosphorus up to 80%, followed by aluminum chloride and aluminum sulfate. The lowest proportion of aluminum quality to phosphorus quality is 63 as using poly aluminum chloride, followed by aluminum chloride and aluminum sulfate. It is suggested that the poly aluminum chloride should be the best option to remove phosphorus in water plant.展开更多
基金financially supported by the National Natural Science Foundation of China (No.52171144)。
文摘Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature.
基金This study was approved by the Medical Ethics Committee of Shenzhen University Health Science Center(protocol no.2016001).
文摘Accumulating evidence has indicated that long non-coding RNAs(lncRNAs)play critical roles in the development and progression of cancers,including esophageal squamous cell carcinoma(ESCC).However,the mechanisms of lncRNAs in ESCC are still incompletely understood and therapeutic attempts for in vivo targeting cancer-associated lncRNA remain a challenge.By RNA-sequencing analysis,we identified that LLNLR-299G3.1 was a novel ESCC-associated lncRNA.LLNLR-299G3.1 was up-regulated in ESCC tissues and cells and promoted ESCC cell proliferation and invasion.Silencing of LLNLR-299G3.1 with ASO(antisense oligonucleotide)resulted in opposite effects.Mechanistically,LLNLR-299G3.1 bound to cancerassociated RNA binding proteins and regulated the expression of cancer-related genes,including OSM,TNFRSF4,HRH3,and SSTR3.ChIRP-seq(chromatin isolation by RNA purification and sequencing)revealed that these genes contained enriched chromatin binding sites for LLNLR-299G3.1.Rescue experiments confirmed that the effects of LLNLR-299G3.1 on ESCC cell proliferation were dependent on interaction with HRH3 and TNFRSF4.Therapeutically,intravenous delivery of placental chondroitin sulfate A binding peptide-coated nanoparticles containing antisense oligonucleotide(pICSA-BP-ANPs)strongly inhibited ESCC tumor growth and significantly improved animal survival in vivo.Overall,our results suggest that LLNLR-299G3.1 promotes ESCC malignancy through regulating gene-chromatin interactions and targeting ESCC by pICSA-BP-ANPs may be an effective strategy for the treatment of lncRNA-associated ESCC.
基金supported by the National Natural Sci-ence Foundation of China(No.U1904196,No.82073699)the Natural Science Foundation of Henan(No.222300420055).
文摘Partial genetically encoded 4-hy-droxybenzylidene-imidazolinone(HBI)-type chromophores are new promising fluorescent probes,which are suitable for imaging and detection of living cells.How-ever,the lack of infrared chro-mophores hinders the develop-ment seriously.Here more than 30 HBI-type chromophores with reg-ular structure modifications were employed and typical spectral redshift change laws and mechanisms were investigated by quantum methods.Results show that both one-photon spectrum(OPS,absorption/emission)and two-photon absorption(TPA)can achieve large redshift via either extending conjugated lengths of frag-3 or enlarging conjugated areas of frag-1 of HBI skeleton.Spectral redshifts of all chromophores are highly related to intramolecular charge transfer(ICT),but neutral ones are closely related to the total ICT or electron-accept-ing-numbers of frag-3,and the high correlative factor of anions is the aromaticity of frag-2 bridge.The frag-2 bridge with high aromaticity can open a reverse charge transfer channel in anion relative to neutral,obtaining significant redshift.Based on analysis,a new 6-hydroxyl-naphthalene-imidazolinone(HNI)series,which have larger conjugated area in frag-1,are pre-dicted.The OPS and TPA of anionic HNI ones acquire about 76−96 nm and 119−146 nm red-shift relative to traditional HBI series respectively as a whole.The longest emission of anionic HNI-4 realizes more 244 nm redshift relative to HBI-1.Our work clarifies worthy spectral reg-ularities and redshift mechanisms of HBI-type chromophores and provides valuable design strategy for infrared chromophores synthesis in experiment.
基金supported by the Key Science and Technology Project of Yunnan(202202AE090014)the National Natural Science Foundation of China(32072016)+1 种基金the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciencesthe Open Fund of Engineering Research Center of Ecology and Agricultural Use of Wetland,Ministry of Education,China(201910)。
文摘A biparental soybean population of 364 recombinant inbred lines(RILs)derived from Zhongdou 41×ZYD02.878 was used to identify quantitative trait loci(QTL)associated with hundred-seed weight(100-SW),pod length(PL),and pod width(PW).100-SW,PL,and PW showed moderate correlations among one another,and 100-SW was correlated most strongly with PW(0.64–0.74).Respectively 74,70,75 and19 QTL accounting for 38.7%–78.8%of total phenotypic variance were identified by inclusive composite interval mapping,restricted two-stage multi-locus genome-wide association analysis,3 variancecomponent multi-locus random-SNP-effect mixed linear model analysis,and conditional genome-wide association analysis.Of these QTL,189 were novel,and 24 were detected by multiple methods.Six loci were associated with 100-SW,PL,and PW and may be pleiotropic loci.A total of 284 candidate genes were identified in colocalizing QTL regions,including the verified gene Seed thickness 1(ST1).Eleven genes with functions involved in pectin biosynthesis,phytohormone,ubiquitin-protein,and photosynthesis pathways were prioritized by examining single nucleotide polymorphism(SNP)variation,calculating genetic differentiation index,and inquiring gene expression.The prediction accuracies of genomic selection(GS)for 100-SW,PL,and PW based on single trait-associated markers reached 0.82,0.76,and 0.86 respectively,but selection index(SI)-assisted GS strategy did not increase GS efficiency and inclusion of trait-associated markers as fixed effects reduced prediction accuracy.These results shed light on the genetic basis of 100-SW,PL,and PW and provide GS models for these traits with potential application in breeding programs.
基金support provided by the National Natural Science Foundation of China(No.62173049)the Open Fund of the Key Laboratory of Exploration Technologies for Oil and Gas Resources(Yangtze University),Ministry of Education(Grant K2021-17).
文摘Foam drainage is theflow of liquid through the interstitial spaces between bubbles driven by capillarity and grav-ity and resisted by viscous damping.The so-called foam drainage gas recovery technology is a technique tradi-tionally used to mitigate the serious bottom-hole liquid loading in the middle and late stages of gas well production.In this context,determining the optimal concentration of the bubble drainage agent is generally cru-cial for the proper application of this method.In this study,a combination of indoor experiments and theoretical analysis have been used to determine the pressure drop related to the foam-carrying capacity in a representative gasfield.Dynamic and static experiments were designed with a bubble drainage agent concentration varying in the range 0.3%–0.6%.Using thefield formation water data,the optimal soaking agent concentration was obtained and pressure drop test experiments on the foam carrying capacity were conducted accordingly.These tests have revealed that the optimal foam displacement agent concentration is 0.5%,and the foam quality at the optimum concentration is between 0.78–0.98.A theoretical method for calculating the pressure drop at the optimum soak-away concentration based on experimental data has also been introduced.The error of the proposed method is within 15%compared to the experimental measured value,demonstrating that it is highly accurate and simple.
基金the National Natural Science Foundation of China under Grant No.12304533Start-up Foundation for Ph.D.of Southwest University of Science and Technology under Grant No.20zx7120.
文摘A microwave-induced thermoacoustic imaging(MITAT)system is a non-destructive physical medical imaging method that combines the advantages of the high contrast of microwave imaging and the high resolution of ultrasound imaging.It uses the microwave as the excitation source and ultrasound as the information carrier.When different kinds of biological tissue absorb electromagnetic energy,it results in localized temperature rises.The thermal expansion will induce ultrasonic signals(i.e.,thermoacoustic signals),known as the thermoacoustic effect.The microwave absorption image of the sample can be reconstructed by algorithm processing.The MITAT contrast depends on different dielectric parameters of different kinds of tissue.We introduce the developed system and its application.In addition,the challenges and prospects of MITAT for further development are discussed.
基金Supported by Tianjin Science and Technology Project of China(13ZCZDSY01500)
文摘AIM:To investigate whether umbilical cord human mesenchymal stem cell(UC-MSC)was able to differentiate into neural stem cell and neuron.·METHODS:The umbilical cords were o btained from pregnant women with their written consent and the approval of the Clinic Ethnics Committee.UC-MSC were isolated by adherent culture in the medium contains 20%fetal bovine serum(FBS),then they were maintained in the medium contain 10%FBS and induced to neural cells in neural differentiation medium.We investigated whether UC-MSC was able to differentiate into neural stem cell and neuron by using flow cytometry,reverse transcriptase-polymerase chain reaction(RT-PCR)and immunofluorescence(IF)analyzes.·R ESULTS:A substantial number of UC-MSC was harvested using the tissue explants adherent method at about 2wk.Flow cytometric study revealed that these cells expressed common markers of MSCs,such as CD105(SH2),CD73(SH3)and CD90.After induction of differentiation of neural stem cells,the cells began to form clusters;RT-PCR and IF showed that the neuron specific enolase(NSE)and neurogenic differentiation 1-positive cells reached 87.3%±14.7%and 72.6%±11.8%,respectively.Cells showed neuronal cell differentiation after induced,including neuron-like protrusions,plump cell body,obviously and stronger refraction.RT-PCR and IF analysis showed that microtubule-associated protein 2(MAP2)and nuclear factor-M-positive cells reached 43.1%±10.3%and 69.4%±19.5%,respectively.·CONCLUSION:Human umbilical cord derived MSCs can be cultured and proliferated and differentiate into neural stem cells,which may be a valuable source for cell therapy of neurodegenerative eye diseases.
基金Supported by The National Natural Science Foundation of China,30770584the State 863 Plan,2002AA302207,2007AA03Z356
文摘AIM:To study the methods of preparing the magnetic nano-microspheres of Fe2O3 and As2O3/Fe2O3 complexes and their therapeutic effects with magnetic fluid hyperthermia(MFH). METHODS:Nanospheres were prepared by chemical co-precipitation and their shape and diameter were observed.Hemolysis,micronucleus,cell viability,and LD50 along with other in vivo tests were performed to evaluate the Fe2O3 microsphere biocompatibility.The inhibition ratio of tumors after Fe2O3 and As2O3/Fe2O3 injections combined with induced hyperthermia in xenograft human hepatocarcinoma was calculated. RESULTS:Fe2O3 and As2O3/Fe2O3 particles were round with an average diameter of 20 nm and 100 nm as observed under transmission electron microscope.Upon exposure to an alternating magnetic field(AMF),the temperature of the suspension of magnetic particles increased to 41-51℃,depending on different particle concentrations,and remained stable thereafter.Nanosized Fe2O3 microspheres are a new kind of biomaterial without cytotoxic effects.The LD50 of both Fe2O3 and As2O3/Fe2O3 in mice was higher than 5 g/kg.One to four weeks after Fe2O3 and As2O3/Fe2O3 complex injections into healthy pig livers,no significant differences were found in serum AST,ALT,BUN and Cr levels among thepigs of all groups(P>0.05),and no obvious pathological alterations were observed.After exposure to alternating magnetic fields,the inhibition ratio of the tumors was significantly different from controls in the Fe2O3 and As2O3/Fe2O3 groups(68.74% and 82.79%,respectively; P<0.01).Tumors of mice in treatment groups showed obvious necrosis,while normal tissues adjoining the tumor and internal organs did not. CONCLUSION:Fe2O3 and As2O3/Fe2O3 complexes exerted radiofrequency-induced hyperthermia and drug toxicity on tumors without any liver or kidney damage. Therefore,nanospheres are ideal carriers for tumortargeted therapy.
文摘Nano-nitramine explosives(RDX.HMX.CL-20) are produced on a bi-directional grinding mill.The scanning electron microscope(SEM)observations show that the prepared particles are semi-spherical,and the narrow size distributions are characterized using the laser particle size analyzer.Compared with the micron-sized samples,the nano-products show obvious decrease in friction and impact sensitivities.In the case of shock sensitivities,nano-products have lower values by 59.9%(RDX),56.4%(HMX),and 58.1%(CL-20),respectively.When nano-RDX and nano-HMX are used in plastic bonded explosives(PBX) as alternative materials of micron-sized particles,their shock sensitivities are significantly decreased by 24.5%(RDX) and 22.9%(HMX),and their detonation velocities are increased by about 1.7%.Therefore,it is expected to promote the application of nano-nitramine explosives in PBXs and composite modified double-based propellants(CMDBs) so that some of their properties would be improved.
基金Supported by Tianjin Science and Technology ProjectChina(No.13ZCZDSY01500)
文摘AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley(SD) rats were randomly assigned to a normal control group(group A), a diabetic retinopathy(DR) blank control group(group B), a high-concentration transplantation group(group C), a low-concentration transplantation group(group D) and a placebo transplantation group(group E). The expression of nerve growth factor(NGF)protein in the retinal layers was detected by immunohistochemical staining at 2, 4, 6 and 8wk.RESULTS: The expression of NGF was positive in group A and most positive in the retinal ganglion cell layer. In groups B and E, the expression of NGF was positive 2wk after transplantation and showed an increase in all layers. However, the level of expression had decreased in all layers at 4wk and was significantly reduced at 8wk. In groups C and D, the expression of NGF had increased at 2wk and continued to increase up to 8wk. The level of expression in group C was much higher than that in group D.CONCLUSION: DR can be improved by intravitreal injection of human umbilical mesenchymal stem cells.High concentrations of human umbilical mesenchymal stem cells confer a better protective effect on DR than low concentrations.
基金supported by National Natural Science Foundation of China (No. 11475038)
文摘The effects of driving frequency on plasma parameters and electron heating efficiency are studied in cylindrical inductively coupled plasma(ICP) source. Measurements are made in an Ar discharge for driving frequency at 13.56/2 MHz, and pressures of 0.4-1.2 Pa. In 13.56 MHz discharge, higher electron density(n_e) and higher electron temperature(T_e) are observed in comparison with 2 MHz discharge at 0.6-1.2 Pa. However, slightly higher n_e and T_e are observed in 2 MHz discharge at 0.4 Pa. This observation is explained by enhanced electron heating efficiency due to the resonance between the oscillation of 2 MHz electromagnetic field and electron-neutral collision process at 0.4 Pa. It is also found that the variation of T_edistribution is different in 13.56 and 2 MHz discharge.For ICP at 13.56 MHz, T_eshows an edge-high profile at 0.4-1.2 Pa. For 2 MHz discharge, T_e remains an edge-high distribution at 0.4-0.8 Pa. However, the distribution pattern involves into a center-high profile at 0.9-1.2 Pa. The spatial profiles of n_e remain a center-high shape in both 13.56 and 2 MHz discharges, which indicates the nonlocal kinetics at low pressures. Better uniformity could be achieved by using 2 MHz discharge. The effects of gas pressure on plasma parameters are also examined. An increase in gas pressure necessitates the rise of n_e in both 13.56 and 2 MHz discharges. Meanwhile, T_e drops when gas pressure increases and shows a flatter distribution at higher pressure.
基金Supported by Anhui Provincal Natural Science Foundation of China (Grant No. 1608085ME109)National Natural Science Foundation of China (Grant Nos. 51675005, 51105001)State Key Laboratory of Automotive Safety and Energy, Tsinghua University, China (Grant No. KF14022)
文摘The current research of wheel force transducer (WFT) mainly focuses on test signal processing and decoupling methods based on signal itself, while the WFT structure optimization research related to decreasing the mass and increase the natural frequency and comprehen- sive sensitivity is not enough. In order to improve the WFT test accuracy, a structure optimization method based on natural frequency and comprehensive sensitivity indicators is put forward. The WPT with 8-beam elastic body is used for the finite element modeling (FEM), in which the fol- lowing variations are taken into consideration: the con- nection type of elastic body with modified rim, the number of connection holes, and the respects of strain beam including the shape, the cross sectional area and the length, etc.. The test results shows that the natural frequency of the connecting block type is increased by 65.5% compared with the connecting seat type of elastic body & modified rim, and the main channel sensitivity is improved as well. The results show that the connecting block type will achieve the best comprehensive performance when the number of connecting holes between the elastic body and the modified rim is 20. And the thinner and longer strain beam with smaller cross section area is preferable within the scope of elastic body mechanical strength. This research proposes a novel structure optimization method for WFT which contributes to improve the measurement performance of WFT.
基金jointly supported by the National Key Research and Development Program of China(No.2019YFC1804304)the National Natural Science Foundation of China(Nos.2167212,41772254)。
文摘CO_(2)+O_(2) in-situ leaching(ISL)of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO_(2)+O_(2) in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O_(2)(aq)and bicarbonate(HCO_(3)-)are considered in the CO_(2)+O_(2) ISL reactive transport model of a typical sandstone-hosted uranium ore deposit in northern China.The reactive leaching of uranium is most sensitive to the spatial distribution of the mineralogical properties of the uranium deposit.Stochastic geostatistical models are used to represent the uncertainty on the spatial distribution of mineral grades.A Monte Carlo analysis was also performed to simulate the uranium production variability over an entire set of geostatistical realizations.The ISL stochastic simulation performed with the selected geostatistical realizations approximates the uranium production variability well.The simulation results of the ISL reactive transport model show that the extent of the uranium plume is highly dependent on mineralogical heterogeneity.The uncertainty analysis suggests the effect of uranium grade heterogeneity was found to be important to improve the accurate capture of the uncertainty.This study provides guidance for the accurate simulation and dynamic regulation of the CO_(2)+O_(2) leaching process of uranium at the scale of large mining areas.
基金Supported by the National Natural Science Foundation of China(No.81700846)Tianjin Science and Technology Project of China(No.14JCYBJC27400)Science and technology Project of Tianjin Municipal Health Bureau(No.2015KZ073)
文摘AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(h UCMSCs) on the expression of vascular endothelial growth factor-A(VEGF-A) in blue light injured human retinal pigment epithelial(RPE) cells and laser-induced choroidal neovascularization(CNV) in rats.METHODS: Exosomes were isolated from h UCMSCs and characterized by transmission electron microscope and Western blot. MSCs-derived exosomes were cultured with RPE cells exposed to blue light. The m RNA and protein expression of VEGF-A were determined by real time-polymerase chain reaction(PCR) and Western blot, respectively. Immunofluorescence assay was used for the detection of the expression level of VEGF-A. We injected different doses of MSCs-derived exosomes intravitreally to observe and compare their effects in a mouse model of laserinduced retinal injury. The histological structure of CNV in rats was inspected by hematoxylin-eosin(HE) staining and fundus fluorescein angiography. The expression of VEGF-A was detected by immunohistochemistry.RESULTS: Exosomes exhibited the typical characteristic morphology(cup-shaped) and size(diameter between 50 and 150 nm). The exosomes marker, CD63, and h UCMSCs marker, CD90, showed a robust presence. In vitro, MSCsderived exosomes downregulated the m RNA(Exo-L: t=6.485, 7.959, 9.286; Exo-M: t=7.517, 10.170, 13.413; Exo-H: t=10.317, 12.234, 14.592, P〈0.05) and protein(Exo-L: t=2.945, 4.477, 6.657; Exo-M: t=4.713, 6.421, 8.836; Exo-H:t=6.539, 12.194, 12.783; P〈0.05) expression of VEGF-A in RPE cells after blue light stimulation. In vivo, we found that the MSCs-derived exosomes reduced damage, distinctly downregulated VEGF-A(Exo-H: t=0.957, 1.382; P〈0.05), and gradually improved the histological structures of CNV for a better visual function(Exo-L: 0.346, Exo-M: 3.382, Exo-H: 8.571; P〈0.05). CONCLUSION: MSCs-derived exosomes ameliorate blue light stimulation in RPE cells and laser-induced retinal injury via downregulation of VEGF-A.
文摘A kind of integrated network architecture visible light communication (VLC) and power line communication (PLC) is put forward. This architecture is low cost and easy to implement which overcomes the shortcoming of the traditional network architecture. Furthermore, the VLC-PLC integration technology is applied to typical power grid business scene, which is substation intelligent inspection. The business process of master station platform is analyzed. During the intelligent inspection, the VLC-PLC system provides voice communication for on-site inspection personnel and management personnel, and position service. The system can ensure the safety and security of power production.
文摘That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. This study conducted the experiments of phosphorus removal by three coagulants including aluminum chloride, aluminum sulfate and poly aluminum chloride. The results indicated that the poly aluminum chloride is the preferred one that could remove phosphorus up to 80%, followed by aluminum chloride and aluminum sulfate. The lowest proportion of aluminum quality to phosphorus quality is 63 as using poly aluminum chloride, followed by aluminum chloride and aluminum sulfate. It is suggested that the poly aluminum chloride should be the best option to remove phosphorus in water plant.