Autoimmune diseases are affected by complex pathophysiology involving several cell types,cytokines,antibodies,and mimicking factors.Different drugs are used to ameliorate these autoimmune reactions,including nonsteroi...Autoimmune diseases are affected by complex pathophysiology involving several cell types,cytokines,antibodies,and mimicking factors.Different drugs are used to ameliorate these autoimmune reactions,including nonsteroidal anti-inflammatory drugs(NSAIDs),corticosteroids,antiantibodies,and small molecular drugs(DMARDs),and they are clinically in vogue for diseases such as rheumatoid arthritis(RA).Nevertheless,low cost-effectiveness,reduced efficacy,adverse effects,and patient nonresponse are unappealing factors driving the development of new drugs such as iguratimod.Iguratimod is primarily used to ameliorate RA in Japanese and Chinese clinics.However,its efficacy against other autoimmune ailments is also under intense investigation,and the number of investigations is becoming increasingly larger with each passing day.The articular structure comprises synovium,ligaments,and bone.The latter is more complex than the others since it regulates blood cells and autoimmunity in addition to providing skeletal support to the body.Therefore,its protection is also of prime importance in RA and other autoimmune diseases.Herein,we have highlighted the role of iguratimod in autoimmune diseases and bone protection.We suggest that iguratimod’s unique mode of action compared with that of other DMARDs and its good patient response makes it a suitable antirheumatic and bone-protecting drug.展开更多
With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions ha...With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions have been investigated based on the ordinary Kriging interpolation approach. Generally, for the radiation processes, downward and upward short-wave radiation have a uniformly increasing trend with latitude, but the spatial patterns of long-wave radiation present notable regional differences: both upward and downward long-wave radiation increase with latitude in the west of North China, while in the east they vary inversely with latitude, suggesting surface temperature and clouds respectively have feedbacks to the long-wave radiation in the west and east of North China. The surface net radiation basically has a negative latitudinal trend. Long-wave radiation budget plays an important role in the spatial pattern of surface net radiation, particularly in the east of North China, although short-wave radiation budget largely determines the magnitude of surface net radiation. For the energy processes, latent and sensible heat flux varies conversely with latitude: more available land surface energy is consumed by evaporating soil water at lower latitudes while more is used for heating the atmosphere at higher latitudes. A soil heat flux maximum and minimum are found in Loess Plateau and Qinghai Plateau respectively, and a maximum is seen in the northeast China.展开更多
The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices sh...The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices showed the reliability degradation after irradiation,including turn-on voltage Von,on-resistance Ron,ideality factor n,and the reverse leakage current density Jr.In addition,the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×10^(6)-1.3×10^(7)cm^(-1).Latent tracks induced by swift heavy ions were observed visually in the wholeβ-Ga2O3 matrix.Furthermore,crystal structure of tracks was amorphized completely.The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration.Eventually,these defects caused the degradation of electrical characteristics of the devices.In terms of the carrier removal rates,theβ-Ga_(2)O_(3) SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.展开更多
This study investigated the promotion effect of A.ferrooxidans on complex heavy metals coprecipitation process.A.ferrooxidans significantly enhanced the ferrous oxidation,which also promoted the formation of iron-oxyh...This study investigated the promotion effect of A.ferrooxidans on complex heavy metals coprecipitation process.A.ferrooxidans significantly enhanced the ferrous oxidation,which also promoted the formation of iron-oxyhydroxysulphate.Cu(II)concentration reduced to0.058mmol/L in A.ferrooxidans inoculated system,and Cd also reduced to the lowest concentration(0.085mmol/L).Pb was mainly immobilized as anglesite and iron-oxyhydroxysulphate promoted the removal of remanent Pb in solution.The precipitates are characterized by XRD,SEM,and FTIR analysis.The main component of the iron-oxyhydroxysulphate was well crystallized jarosite.A.ferrooxidans contributed to the formation of schwertmannite in later monovalent cation lack stage.Higher ferrous iron oxidation rate and Fe(III)supply rate in A.ferrooxidans inoculated system facilitated polyhedron crystal formation and the increase of particle diameter.Complex heavy metals could be incorporated into iron oxyhydroxysulphate crystal,and efficiently removed from acidic wastewater through A.ferrooxidans mediated coprecipitation.展开更多
During the 29 th Chinese National Antarctic Research Expedition,spatial variations in nitrogen isotopic composition of particulate nitrogen(δ15NPN)and their controlling factors were examined in detail with regard to ...During the 29 th Chinese National Antarctic Research Expedition,spatial variations in nitrogen isotopic composition of particulate nitrogen(δ15NPN)and their controlling factors were examined in detail with regard to nitrate drawdown by phytoplankton and particulate nitrogen(PN)remineralization in the Prydz Bay and its adjacent areas.To better constrain the nitrogen transformations,the physical and chemical parameters,including temperature,salinity,nutrients,PN andδ15NPN in seawater column were measured from surface to bottom.In addition,the nitrogen isotopic fractionation factor of nitrate assimilation by phytoplankton in the mixed layer,and the nitrogen isotopic fractionation factor of PN remineralization below the mixed layer were estimated using Rayleigh model and Steady State model,respectively.Our results showed that suspended particles had its lowestδ15NPN in the surface layer,which was due to the preferential assimilation of 14 N in nitrate by phytoplankton.Theδ15NPN in the mixed layer of the Prydz Bay and its adjacent areas decreased from the inner shelf to the outer basin,ascribing to the effect of isotope fractionation during phytoplankton assimilation.In mixed layer,the spatial distribution ofδ15NPN associated with particulate organic matter(POM)production can be well interpreted according to Rayleigh model and Steady State model.The nitrogen isotope fractionation factor during phytoplankton assimilating nitrate was estimated as 10.0‰by Steady State model,which was more reasonable than that calculated by Rayleigh model.These results validate the previous reports of fractionation factor during nitrate assimilation by phytoplankton.Increasingδ15NPN with depth below the euphotic zone correlated with the decreasing PN contents,and it was attributed to preferential remineralization of 14 N in PN by bacteria.In subsurface and deep layer,theδ15NPN distributions also conformed to Rayleigh model and Steady State model during PN remineralization,with a fractionation factor of about 3.6‰and 3.2‰,respectively.It is the first time to estimate the fractionation factor during POM production and remineralization in the Prydz Bay and its adjacent areas.Such fractionation may provide a useful tool for the follow-up study of the nitrogen dynamics in the Southern Ocean.展开更多
目的:应用Sirius眼前节分析系统观察早产儿视网膜病变(ROP)激光光凝术后儿童眼前节各组织发育情况。方法:回顾性病例研究。选取2015-09/2018-04于深圳市眼科医院因ROP已行激光光凝治疗的儿童25例50眼纳入ROP组,同时选取年龄匹配的足月儿...目的:应用Sirius眼前节分析系统观察早产儿视网膜病变(ROP)激光光凝术后儿童眼前节各组织发育情况。方法:回顾性病例研究。选取2015-09/2018-04于深圳市眼科医院因ROP已行激光光凝治疗的儿童25例50眼纳入ROP组,同时选取年龄匹配的足月儿童23例46眼为对照组。两组儿童均行最佳矫正视力(BCVA)检查,并采用Sirius眼前节分析系统测量虹膜水平直径(HVID)、角膜最薄点半径、角膜最薄点厚度、角膜最大曲率半径、角膜最大曲率、中央角膜厚度(CCT)、角膜容积(CV)、前房深度(ACD)、前房容积、前房房角。结果:ROP组儿童HVID、角膜最薄点厚度、ACD、前房容积均明显小于对照组(均P<0.05),CV、前房房角均小于对照组,但两组间无差异(均P>0.05)。对照组儿童BCVA明显优于ROP组(0.07±0.10 vs 0.24±0.25,P<0.05)。结论:ROP激光光凝术后儿童眼前节组织的形态结构发生改变,角膜形态较陡峭,前房深度变浅,房角偏小,最佳矫正视力较差,可能更容易发展为屈光不正及青光眼等。展开更多
High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-p...High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time.展开更多
This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land sur...This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land surface dewfall, and describes several basic dewfall measurement methods. Moreover, the basic principles of these methods and instruments are interpreted, and their advantages, disadvantages, and applicability are analyzed. Recommendations for the further improvement of these observational instruments and the development of dewfall measuring methods are presented, and new technologies and scientific proposals for exploiting dewfall are elucidated.展开更多
Kernel size, one of the traits that determine wheat yield, is controlled by multiple quantitative trait loci.Polish wheat(Triticum polonicum) has elongated and plump kernel and is a valuable material for breeding high...Kernel size, one of the traits that determine wheat yield, is controlled by multiple quantitative trait loci.Polish wheat(Triticum polonicum) has elongated and plump kernel and is a valuable material for breeding high-yielding wheat cultivars. However, genes or loci determining kernel length(KL) in Polish wheat are unknown. We identified and validated a major KL gene, KL-PW, at the P1 locus in Polish wheat. KL-PW is VRT-A2, which encodes a MIKC-type MADS-box protein(MADS55). An insertion/deletion mutation in intron 1 of VRT-A2;led to an alternatively spliced transcript, VRT-A2;. Quantitative PCR analysis showed that VRT-A2;was more highly expressed in developing seeds than was VRT-A2 Ailanmai.Brassinosteroid(BR) sensitivity experiment and the expression of BR-related genes indicated that VRTA2;functions as a positive regulator of BR responses. VRT-A2;significantly increased KL of wheat.These findings not only reveal the molecular basis of KL-PW in controlling KL, but also provide a valuable genetic resource for increasing kernel size in wheat.展开更多
The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy....The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.展开更多
The strongly coupled system composed of atoms,molecules,molecule aggregates,and semiconductor quantum dots embedded within an optical microcavity/nanocavity with high quality factor and/or low modal volume has become ...The strongly coupled system composed of atoms,molecules,molecule aggregates,and semiconductor quantum dots embedded within an optical microcavity/nanocavity with high quality factor and/or low modal volume has become an excellent platform to study cavity quantum electrodynamics(CQED),where a prominent quantum effect called Rabi splitting can occur due to strong interaction of cavity-mode single-photon with the two-level atomic states.In this paper,we build a new quantum model that can describe the optical response of the strongly-coupled system under the action of an external probing light and the spectral lineshape.We take the Hamiltonian for the strongly-coupled photon-atom system as the unperturbed Hamiltonian H_(0)and the interaction Hamiltonian of the probe light upon the coupled-system quantum states as the perturbed Hamiltonian V.The theory yields a double Lorentzian lineshape for the permittivity function,which agrees well with experimental observation of Rabi splitting in terms of spectral splitting.This quantum theory will pave the way to construct a complete understanding for the microscopic strongly-coupled system that will become an important element for quantum information processing,nano-optical integrated circuits,and polariton chemistry.展开更多
Gait planning based on linear inverted pendulum (LIPM) on structured road surface can be quickly generated because of the simple model and definite physical meaning. However, over-simplifi- cation of the model and dis...Gait planning based on linear inverted pendulum (LIPM) on structured road surface can be quickly generated because of the simple model and definite physical meaning. However, over-simplifi- cation of the model and discontents of zero velocity and acceleration boundary conditions when robot starts and stops walking lead to obvious difference between the model and the real robot. In this paper, parameterized gait is planned and trajectories’ smoothness of each joint angle and centroid are ensured using the 3-D LIPM theory. Static walking method is used to satisfy zero velocity and acceleration boundary conditions. Besides, a multi-link model is built to validate the stability. Simulation experiments show that: despite of some deviation from the theoretical solution, the actual zero-moment point (ZMP) is still within the support polygon, and the robot walks steadily. In consequence, the rationality and validity of model simplification of LIPM is demonstrated.展开更多
This paper provides a comprehensive review of research progress in particle-reinforced Mg matrix composites prepared via powder metallurgy.The article discusses different strategies,such as micro-sized,nano-sized part...This paper provides a comprehensive review of research progress in particle-reinforced Mg matrix composites prepared via powder metallurgy.The article discusses different strategies,such as micro-sized,nano-sized particles,and multi-particle hybridization,which has been employed to enhance the performance of the composites.In addition,a range of preparation techniques that optimize the dispersion of the reinforcing particles are summarized.The paper also highlights how the different configurations between the reinforcements and matrix alloy impact the composites’performance.Finally,the article outlines the prospects of particles reinforced Mg matrix composites fabricated via powder metallurgy and recommends modification methods that could be explored to further develop these materials for various applications.展开更多
It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constr...It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constructed to display satisfactory OER activity and good stability for water splitting in alkaline media.At an overpotential of 300 mV,NiFe LDH@CoP/NiP_(3) achieved a current density of 82 mA cm^(-2) for the OER,which was 9.1 and 2.3 times that of CoP/NiP_(3) and NiFe LDH,respectively.Moreover,the reconstruction behavior,during which oxyhydroxides formed,was studied by a combination of X-ray photoelectron spectroscopy,Raman spectroscopy,and scanning electron microscopy.A synergistic effect between NiFe LDH and CoP/NiP_(3) was also observed for the hydrogen evolution reaction.Furthermore,when NiFe LDH@CoP/NiP_(3) acted as both the cathode and anode for overall water splitting,a high current density of 100 mA cm^(-2) was maintained for more than 275 h.In addition,under Xe light irradiation,a solar-to-hydrogen efficiency of 9.89% was achieved for solar-driven water splitting.This work presents the coupling of different active compositions,and can provide a reference for designing bifunctional electrocatalysts.展开更多
The classic phytohormone auxin plays an essential role in priming meristematic cell differentiation in the shoot apical meristem to promote lateral organ initiation. Recently, several lines of evidence have suggested ...The classic phytohormone auxin plays an essential role in priming meristematic cell differentiation in the shoot apical meristem to promote lateral organ initiation. Recently, several lines of evidence have suggested that auxin is not only transported to new primordia but also descends to the stem cells in the central zone. However, the function of auxin in stem cell regulation has remained elusive. Here, we show that auxin signaling in stem cells is mediated, at least in part, byAUXIN RESPONSE FACTOR 5/MONOPTEROS (ARF5/MP), which directly represses the transcription of DORNROSCHEN /ENHANCER OF SHO0 T REGENERA TION 1 (DRN/ESR 1). DRN expressed in stem cells positively regulates CLAVATA3 (CLV3) expression and has important meristematic functions. Our results provide a mechanistic framework for auxin control of shoot stem cell homeostasis and demonstrate how auxin differentially controls plant stem cell maintenance and differentiation.展开更多
Although synthetic rubbers show continuously improved mechanical properties,natural rubber (NR) remains irreplaceable in the rubber family due to its superior mechanical properties.A mainstream viewpoint regarding the...Although synthetic rubbers show continuously improved mechanical properties,natural rubber (NR) remains irreplaceable in the rubber family due to its superior mechanical properties.A mainstream viewpoint regarding the superiority of NR is that NR possesses a natural network formed by linking the poly(cis-l,4-isoprene) chain terminals to protein and phospholipid aggregates;after vulcanization,the natural network additionally contributes to rubber mechanics by both increasing the network density and promoting the strain-induced crystallization (SIC) behavior.However,the reason why the natural network promotes SIC is still unclear;in particular,only using the increased network density cannot explain our finding that the NR shows smaller onset strain of SIC than Gel (the gel component of NR with higher network density) and even vulcanized NR.Herein,we point out that the inhomogeneous chain deformation is the alternative reason why SIC of NR takes place at smaller strain than that of Gel.More specifically,although the natural network is homogenous on the subchain length scale based on the proton double-quantum NMR results,it is essentially inhomogeneous on mesoscale (100 nm),as revealed by the small angle X-ray scattering analysis.This inhomogeneous network also leads to the mesoscale deformation inhomogeneity,as detected by the orientation of stearic acid (SA) probe,thus resulting in the smaller onset strain of SIC of NR.Based on the experimental results,a mesoscale model is proposed to qualitatively describe the crucial roles of inhomogeneous structure and deformation of natural network in NR?s mechanical properties,providing a clue from nature to guide the development of high-performance rubbers with controlled structures at mesoscale.展开更多
基金supported by the Natural Science Foundation of Shandong Province (ZR2012HM038)the Shenzhen Science and Technology Innovation Committee Fund (JCYJ2016033117365255)+1 种基金the China International Medical Foundation (Simcere-Z2014-06-2-1635)the China Torch Program (2013GH021476)
文摘Autoimmune diseases are affected by complex pathophysiology involving several cell types,cytokines,antibodies,and mimicking factors.Different drugs are used to ameliorate these autoimmune reactions,including nonsteroidal anti-inflammatory drugs(NSAIDs),corticosteroids,antiantibodies,and small molecular drugs(DMARDs),and they are clinically in vogue for diseases such as rheumatoid arthritis(RA).Nevertheless,low cost-effectiveness,reduced efficacy,adverse effects,and patient nonresponse are unappealing factors driving the development of new drugs such as iguratimod.Iguratimod is primarily used to ameliorate RA in Japanese and Chinese clinics.However,its efficacy against other autoimmune ailments is also under intense investigation,and the number of investigations is becoming increasingly larger with each passing day.The articular structure comprises synovium,ligaments,and bone.The latter is more complex than the others since it regulates blood cells and autoimmunity in addition to providing skeletal support to the body.Therefore,its protection is also of prime importance in RA and other autoimmune diseases.Herein,we have highlighted the role of iguratimod in autoimmune diseases and bone protection.We suggest that iguratimod’s unique mode of action compared with that of other DMARDs and its good patient response makes it a suitable antirheumatic and bone-protecting drug.
基金supported by the State Key Program of National Natural Science of China (Grant No. 40830957)
文摘With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions have been investigated based on the ordinary Kriging interpolation approach. Generally, for the radiation processes, downward and upward short-wave radiation have a uniformly increasing trend with latitude, but the spatial patterns of long-wave radiation present notable regional differences: both upward and downward long-wave radiation increase with latitude in the west of North China, while in the east they vary inversely with latitude, suggesting surface temperature and clouds respectively have feedbacks to the long-wave radiation in the west and east of North China. The surface net radiation basically has a negative latitudinal trend. Long-wave radiation budget plays an important role in the spatial pattern of surface net radiation, particularly in the east of North China, although short-wave radiation budget largely determines the magnitude of surface net radiation. For the energy processes, latent and sensible heat flux varies conversely with latitude: more available land surface energy is consumed by evaporating soil water at lower latitudes while more is used for heating the atmosphere at higher latitudes. A soil heat flux maximum and minimum are found in Loess Plateau and Qinghai Plateau respectively, and a maximum is seen in the northeast China.
基金the National Natural Science Foundation of China(Grant Nos.12035019,11690041,and 12075290)China National Postdoctoral Program for Innovative Talents(Grant No.BX20200340)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673539)CAS"Light of West China"Program,and the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(Grant No.2020412).
文摘The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices showed the reliability degradation after irradiation,including turn-on voltage Von,on-resistance Ron,ideality factor n,and the reverse leakage current density Jr.In addition,the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×10^(6)-1.3×10^(7)cm^(-1).Latent tracks induced by swift heavy ions were observed visually in the wholeβ-Ga2O3 matrix.Furthermore,crystal structure of tracks was amorphized completely.The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration.Eventually,these defects caused the degradation of electrical characteristics of the devices.In terms of the carrier removal rates,theβ-Ga_(2)O_(3) SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.
基金Project(51174239)supported by the National Natural Science Foundation of ChinaProject supported by the Shanghai Tongji Gao Tingyao Environment Protection Science&Technology Development Foundation,China+2 种基金Project supported by the Hunan Provincial Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources,ChinaProject(2017M610506)supported by Postdoctoral Foundation for MG from Chinese PD Science Foundation,ChinaProject(185690)supported by PD Research Funding Plan in Hunan and Central South University,China
文摘This study investigated the promotion effect of A.ferrooxidans on complex heavy metals coprecipitation process.A.ferrooxidans significantly enhanced the ferrous oxidation,which also promoted the formation of iron-oxyhydroxysulphate.Cu(II)concentration reduced to0.058mmol/L in A.ferrooxidans inoculated system,and Cd also reduced to the lowest concentration(0.085mmol/L).Pb was mainly immobilized as anglesite and iron-oxyhydroxysulphate promoted the removal of remanent Pb in solution.The precipitates are characterized by XRD,SEM,and FTIR analysis.The main component of the iron-oxyhydroxysulphate was well crystallized jarosite.A.ferrooxidans contributed to the formation of schwertmannite in later monovalent cation lack stage.Higher ferrous iron oxidation rate and Fe(III)supply rate in A.ferrooxidans inoculated system facilitated polyhedron crystal formation and the increase of particle diameter.Complex heavy metals could be incorporated into iron oxyhydroxysulphate crystal,and efficiently removed from acidic wastewater through A.ferrooxidans mediated coprecipitation.
基金The National Natural Science Foundation of China under contract No.41721005the COMRA Program of China under contract No.DY135-E2-2-03the Polar Environment Comprehensive Investigation&Assessment Program of China under contract Nos CHINARE2017-01-04-03 and CHINARE2017-04-01-06
文摘During the 29 th Chinese National Antarctic Research Expedition,spatial variations in nitrogen isotopic composition of particulate nitrogen(δ15NPN)and their controlling factors were examined in detail with regard to nitrate drawdown by phytoplankton and particulate nitrogen(PN)remineralization in the Prydz Bay and its adjacent areas.To better constrain the nitrogen transformations,the physical and chemical parameters,including temperature,salinity,nutrients,PN andδ15NPN in seawater column were measured from surface to bottom.In addition,the nitrogen isotopic fractionation factor of nitrate assimilation by phytoplankton in the mixed layer,and the nitrogen isotopic fractionation factor of PN remineralization below the mixed layer were estimated using Rayleigh model and Steady State model,respectively.Our results showed that suspended particles had its lowestδ15NPN in the surface layer,which was due to the preferential assimilation of 14 N in nitrate by phytoplankton.Theδ15NPN in the mixed layer of the Prydz Bay and its adjacent areas decreased from the inner shelf to the outer basin,ascribing to the effect of isotope fractionation during phytoplankton assimilation.In mixed layer,the spatial distribution ofδ15NPN associated with particulate organic matter(POM)production can be well interpreted according to Rayleigh model and Steady State model.The nitrogen isotope fractionation factor during phytoplankton assimilating nitrate was estimated as 10.0‰by Steady State model,which was more reasonable than that calculated by Rayleigh model.These results validate the previous reports of fractionation factor during nitrate assimilation by phytoplankton.Increasingδ15NPN with depth below the euphotic zone correlated with the decreasing PN contents,and it was attributed to preferential remineralization of 14 N in PN by bacteria.In subsurface and deep layer,theδ15NPN distributions also conformed to Rayleigh model and Steady State model during PN remineralization,with a fractionation factor of about 3.6‰and 3.2‰,respectively.It is the first time to estimate the fractionation factor during POM production and remineralization in the Prydz Bay and its adjacent areas.Such fractionation may provide a useful tool for the follow-up study of the nitrogen dynamics in the Southern Ocean.
文摘目的:应用Sirius眼前节分析系统观察早产儿视网膜病变(ROP)激光光凝术后儿童眼前节各组织发育情况。方法:回顾性病例研究。选取2015-09/2018-04于深圳市眼科医院因ROP已行激光光凝治疗的儿童25例50眼纳入ROP组,同时选取年龄匹配的足月儿童23例46眼为对照组。两组儿童均行最佳矫正视力(BCVA)检查,并采用Sirius眼前节分析系统测量虹膜水平直径(HVID)、角膜最薄点半径、角膜最薄点厚度、角膜最大曲率半径、角膜最大曲率、中央角膜厚度(CCT)、角膜容积(CV)、前房深度(ACD)、前房容积、前房房角。结果:ROP组儿童HVID、角膜最薄点厚度、ACD、前房容积均明显小于对照组(均P<0.05),CV、前房房角均小于对照组,但两组间无差异(均P>0.05)。对照组儿童BCVA明显优于ROP组(0.07±0.10 vs 0.24±0.25,P<0.05)。结论:ROP激光光凝术后儿童眼前节组织的形态结构发生改变,角膜形态较陡峭,前房深度变浅,房角偏小,最佳矫正视力较差,可能更容易发展为屈光不正及青光眼等。
基金the financial supports from the National Key Research and Development Plan(Grant No.2021YFB3701100)the National Natural Science Foundation of China(Grant No.U2241231,No.52071206)。
文摘High reactivity and ease of ignition are the major obstacles for the application of Mg alloys in aerospace.Thus,the ignition mechanisms of Mg alloys should be investigated systematically,which can guide the ignition-proof alloy design.This article concludes the factors influencing the ignition resistance of Mg alloys from oxide film and substrate microstructure,and also the mechanisms of alloying elements improving the ignition resistance.The low strength is another reason restricting the development of Mg alloys.Therefore,at the last section,Mg alloys with the combination of high strength and good ignition-proof performance are summarized,including Mg-Al-Ca based alloys,SEN(Mg-Al-Zn-Ca-Y)alloys as well as Mg-Y and Mg-Gd based alloys.Besides,the shortages and the future focus of theses alloys are also reviewed.The aim of this article is to promote the understanding of oxidation and ignition mechanisms of Mg alloys and to provide reference for the development of Mg alloys with high strength and excellent ignition-proof performance at the same time.
基金supported by the National Science Foundation of China (Grant Nos. 40830957 and 40575006)
文摘This paper systematically summarizes previous measuring methods and observational instruments for the magnitude of dewfall on land surface, analyzes the characteristics of common observational instruments for land surface dewfall, and describes several basic dewfall measurement methods. Moreover, the basic principles of these methods and instruments are interpreted, and their advantages, disadvantages, and applicability are analyzed. Recommendations for the further improvement of these observational instruments and the development of dewfall measuring methods are presented, and new technologies and scientific proposals for exploiting dewfall are elucidated.
基金supported by the National Natural Science Foundation of China(31671688)the Bureau of Science and Technology of Sichuan Province(2020YJ0141)。
文摘Kernel size, one of the traits that determine wheat yield, is controlled by multiple quantitative trait loci.Polish wheat(Triticum polonicum) has elongated and plump kernel and is a valuable material for breeding high-yielding wheat cultivars. However, genes or loci determining kernel length(KL) in Polish wheat are unknown. We identified and validated a major KL gene, KL-PW, at the P1 locus in Polish wheat. KL-PW is VRT-A2, which encodes a MIKC-type MADS-box protein(MADS55). An insertion/deletion mutation in intron 1 of VRT-A2;led to an alternatively spliced transcript, VRT-A2;. Quantitative PCR analysis showed that VRT-A2;was more highly expressed in developing seeds than was VRT-A2 Ailanmai.Brassinosteroid(BR) sensitivity experiment and the expression of BR-related genes indicated that VRTA2;functions as a positive regulator of BR responses. VRT-A2;significantly increased KL of wheat.These findings not only reveal the molecular basis of KL-PW in controlling KL, but also provide a valuable genetic resource for increasing kernel size in wheat.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11675233,11690041,11405229,11705246,and 11505243)Chinese Academy of Sciences “Light of West China” Programthe Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2020412)。
文摘The various morphologies of tracks in MoS2 irradiated by swift heavy ions at normal and 30° incidence with 9.5–25.0 MeV/u 86Kr, 129Xe, 181Ta, and 209Bi ions were investigated by transmission electron microscopy. The diameter of ion tracks increases from 1.9 nm to 4.5 nm with increasing electronic energy loss. The energy loss threshold of the track formation in MoS2 is predicted as about 9.7 keV/nm based on the thermal spike model and it seems consistent with the experimental results. It is shown that the morphology of ion tracks is related to the penetration length of ions in MoS2. The formation process of ion tracks is discussed based on the cooperative process of outflow and recrystallization of the molten phase during rapid quenching.
基金Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0306200)the National Natural Science Foundation of China(Grant No.11974119)Guangdong Provincial Innovative and Entrepreneurial Research Team Program,China。
文摘The strongly coupled system composed of atoms,molecules,molecule aggregates,and semiconductor quantum dots embedded within an optical microcavity/nanocavity with high quality factor and/or low modal volume has become an excellent platform to study cavity quantum electrodynamics(CQED),where a prominent quantum effect called Rabi splitting can occur due to strong interaction of cavity-mode single-photon with the two-level atomic states.In this paper,we build a new quantum model that can describe the optical response of the strongly-coupled system under the action of an external probing light and the spectral lineshape.We take the Hamiltonian for the strongly-coupled photon-atom system as the unperturbed Hamiltonian H_(0)and the interaction Hamiltonian of the probe light upon the coupled-system quantum states as the perturbed Hamiltonian V.The theory yields a double Lorentzian lineshape for the permittivity function,which agrees well with experimental observation of Rabi splitting in terms of spectral splitting.This quantum theory will pave the way to construct a complete understanding for the microscopic strongly-coupled system that will become an important element for quantum information processing,nano-optical integrated circuits,and polariton chemistry.
文摘Gait planning based on linear inverted pendulum (LIPM) on structured road surface can be quickly generated because of the simple model and definite physical meaning. However, over-simplifi- cation of the model and discontents of zero velocity and acceleration boundary conditions when robot starts and stops walking lead to obvious difference between the model and the real robot. In this paper, parameterized gait is planned and trajectories’ smoothness of each joint angle and centroid are ensured using the 3-D LIPM theory. Static walking method is used to satisfy zero velocity and acceleration boundary conditions. Besides, a multi-link model is built to validate the stability. Simulation experiments show that: despite of some deviation from the theoretical solution, the actual zero-moment point (ZMP) is still within the support polygon, and the robot walks steadily. In consequence, the rationality and validity of model simplification of LIPM is demonstrated.
基金supports of the National Natural Science Foundation of China (Nos.U2241231 and 51631006).
文摘This paper provides a comprehensive review of research progress in particle-reinforced Mg matrix composites prepared via powder metallurgy.The article discusses different strategies,such as micro-sized,nano-sized particles,and multi-particle hybridization,which has been employed to enhance the performance of the composites.In addition,a range of preparation techniques that optimize the dispersion of the reinforcing particles are summarized.The paper also highlights how the different configurations between the reinforcements and matrix alloy impact the composites’performance.Finally,the article outlines the prospects of particles reinforced Mg matrix composites fabricated via powder metallurgy and recommends modification methods that could be explored to further develop these materials for various applications.
基金financially supported by Hunan Provincial Science and Technology Plan Project(2017TP1001 and2020JJ4710)the National Key R&D Program of China(2018YFB0704100)the State Key Laboratory Fund。
文摘It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constructed to display satisfactory OER activity and good stability for water splitting in alkaline media.At an overpotential of 300 mV,NiFe LDH@CoP/NiP_(3) achieved a current density of 82 mA cm^(-2) for the OER,which was 9.1 and 2.3 times that of CoP/NiP_(3) and NiFe LDH,respectively.Moreover,the reconstruction behavior,during which oxyhydroxides formed,was studied by a combination of X-ray photoelectron spectroscopy,Raman spectroscopy,and scanning electron microscopy.A synergistic effect between NiFe LDH and CoP/NiP_(3) was also observed for the hydrogen evolution reaction.Furthermore,when NiFe LDH@CoP/NiP_(3) acted as both the cathode and anode for overall water splitting,a high current density of 100 mA cm^(-2) was maintained for more than 275 h.In addition,under Xe light irradiation,a solar-to-hydrogen efficiency of 9.89% was achieved for solar-driven water splitting.This work presents the coupling of different active compositions,and can provide a reference for designing bifunctional electrocatalysts.
基金supported by the National Natural Science Foundation of China (31270325 and 91317310 to Z.Z. and 31400251 to H.W.) and the Ministry of Science and Technology of China (2013CB967300, to Z.Z.). The authors thank Prof. Wolfgang Werr, Prof. Dolf Weijers, and Jan Lohmann for sharing mutant or transgenic seeds. RNA-seq data have been deposited in the Gene Expression Omnibus under accession number GEO: GSE93232. The authors declare no competing financial interests.
文摘The classic phytohormone auxin plays an essential role in priming meristematic cell differentiation in the shoot apical meristem to promote lateral organ initiation. Recently, several lines of evidence have suggested that auxin is not only transported to new primordia but also descends to the stem cells in the central zone. However, the function of auxin in stem cell regulation has remained elusive. Here, we show that auxin signaling in stem cells is mediated, at least in part, byAUXIN RESPONSE FACTOR 5/MONOPTEROS (ARF5/MP), which directly represses the transcription of DORNROSCHEN /ENHANCER OF SHO0 T REGENERA TION 1 (DRN/ESR 1). DRN expressed in stem cells positively regulates CLAVATA3 (CLV3) expression and has important meristematic functions. Our results provide a mechanistic framework for auxin control of shoot stem cell homeostasis and demonstrate how auxin differentially controls plant stem cell maintenance and differentiation.
基金financially supported by the National Natural Science Foundation of China (No. 51333003)Special Fund for Agro-scientific Research in the Public Interest (No. 201403066-1)
文摘Although synthetic rubbers show continuously improved mechanical properties,natural rubber (NR) remains irreplaceable in the rubber family due to its superior mechanical properties.A mainstream viewpoint regarding the superiority of NR is that NR possesses a natural network formed by linking the poly(cis-l,4-isoprene) chain terminals to protein and phospholipid aggregates;after vulcanization,the natural network additionally contributes to rubber mechanics by both increasing the network density and promoting the strain-induced crystallization (SIC) behavior.However,the reason why the natural network promotes SIC is still unclear;in particular,only using the increased network density cannot explain our finding that the NR shows smaller onset strain of SIC than Gel (the gel component of NR with higher network density) and even vulcanized NR.Herein,we point out that the inhomogeneous chain deformation is the alternative reason why SIC of NR takes place at smaller strain than that of Gel.More specifically,although the natural network is homogenous on the subchain length scale based on the proton double-quantum NMR results,it is essentially inhomogeneous on mesoscale (100 nm),as revealed by the small angle X-ray scattering analysis.This inhomogeneous network also leads to the mesoscale deformation inhomogeneity,as detected by the orientation of stearic acid (SA) probe,thus resulting in the smaller onset strain of SIC of NR.Based on the experimental results,a mesoscale model is proposed to qualitatively describe the crucial roles of inhomogeneous structure and deformation of natural network in NR?s mechanical properties,providing a clue from nature to guide the development of high-performance rubbers with controlled structures at mesoscale.