For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure...Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.展开更多
An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature...An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.展开更多
BACKGROUND Catheter-based pulmonary vein isolation(PVI) is an effective and well-established intervention for symptomatic paroxysmal atrial fibrillation(PAF). Nevertheless, late recurrences of atrial fibrillation(LRAF...BACKGROUND Catheter-based pulmonary vein isolation(PVI) is an effective and well-established intervention for symptomatic paroxysmal atrial fibrillation(PAF). Nevertheless, late recurrences of atrial fibrillation(LRAF) occurring during 3 to 12months are common, and the underlying mechanisms remain elusive. Circular RNAs(circ RNAs) in atrial tissue have been linked to the pathophysiological mechanisms and progression of PAF in a few studies. However, their expression patterns in peripheral blood and regulatory function in LRAF are not clear.METHODS In the present study, the expression profile of circulating circ RNAs in three paired nonvalvular PAF patients with or without LRAF was investigated by high-throughput sequencing and validated by quantitative real-time polymerase chain reaction(q RT-PCR). Bioinformatics analyses, including Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis, and circ RNA/mi RNA regulatory network, were performed to predict the functions and potential regulatory roles of differentially expressed(DE) circ RNAs.RESULTS A total of 12,834 circ RNAs, comprising 5,491 down-regulated and 7,343 up-regulated circ RNAs, were found to be DE in blood smaples from the two groups in peripheral blood between LRAF and non-recurrence control individuals. The most enriched GO categories in terms of molecular function, biological process, and cellular component features were catalytic activity,cellular metabolic process, and intracellular part, respectively. The KEGG enrichment study revealed that the most important metabolic process controlled by DE circ RNAs is endocytosis. In the circ RNA/micro RNAs interaction network, four up-regulated circ RNAs(hsa_circ_0002665, hsa_circ_0001953, hsa_circ_0003831, and hsa_circ_0040533) and one down-regulated circ RNA(hsa_circ_0041103) were predicted to play potential regulatory roles in the pathogenesis of LRAF.CONCLUSIONS This investigation discovered the expression pattern of circulating circ RNAs that is indicative of PAF late recurrence, which may serve as risk markers or therapeutic targets for LRAF after PVI.展开更多
In classical smoothed particle hydrodynamics(SPH)fluid simulation approaches,the smoothing length of Lagrangian particles is typically constant.One major disadvantage is the lack of adaptiveness,which may compromise a...In classical smoothed particle hydrodynamics(SPH)fluid simulation approaches,the smoothing length of Lagrangian particles is typically constant.One major disadvantage is the lack of adaptiveness,which may compromise accuracy in fluid regions such as splashes and surfaces.Attempts to address this problem used variable smoothing lengths.Yet the existing methods are computationally complex and non-efficient,because the smoothing length is typically calculated using iterative optimization.Here,we propose an efficient non-iterative SPH fluid simulation method with variable smoothing length(VSLSPH).VSLSPH correlates the smoothing length to the density change,and adaptively adjusts the smoothing length of particles with high accuracy and low computational cost,enabling large time steps.Our experimental results demonstrate the advantages of the VSLSPH approach in terms of its simulation accuracy and efficiency.展开更多
Background:There have been few reports on long-term survival of gastric cancer patients.This study analyzed the survival data of gastric cancer patients obtained from the population-based Qidong Cancer Registry betwee...Background:There have been few reports on long-term survival of gastric cancer patients.This study analyzed the survival data of gastric cancer patients obtained from the population-based Qidong Cancer Registry between 1972 and 2011,providing a basis for evaluation of gastric cancer treatment and prognosis.Methods:The cumulative observed survival rate and relative survival rate of gastric cancer patients were calculated using Hakulinen's method via the SURV3.01 software,which was developed by the Finnish Cancer Registry.The date of the last follow-up for the survival status of the 15,401 registered cases was April 30,2012.Results:The 1-,5-,10-,20-,and 30-year observed survival rates were 33.82%,14.18%,10.35%,6.63%,and 4.19%,respectively,and the 1-,5-,10-,20-,and 30-year relative survival rates were 35.43%,18.13%,17.50%,21.96%,and32.84%,respectively.For males,the corresponding observed survival rates were 34.50%,14.40%,10.42%,6.46%,and4.05%,and the corresponding relative survival rates were 36.23%,18.67%,18.28%,23.73%,and 38.61%.For females,the corresponding observed survival rates were 32.62%,13.80%,10.22%,6.95%,and 4.46%,and the corresponding relative survival rates were 34.03%,17.21%,16.28%,19.70%,and 26.78%.Significant differences in relative survival rates were observed between sexes(P=0.003).For the 15-34,35-44,45-54,55-64,65-74,and 75+ age groups,the 5-year relative survival rates were 16.13%,21.77%,18.63%,12.61%,7.99%,and 2.94%,respectively,and the 10-year relative survival rates were 16.49%,22.83%,20.50%,15.97%,15.88%,and 15.73%,respectively.Remarkable improvement could be observed for the 5-,10-,and 15-year relative survival rates in Qidong beginning in the 1980 s.Conclusion:The survival outcome of registered gastric cancer cases in Qidong showed gradual progress over the past two decades.展开更多
Qidong(Jiangsu, China) has been of interest to cancer epidemiologists and biologists because, until recently, it was an endemic area for liver cancer, having amongst the highest incidence rates in the world. The estab...Qidong(Jiangsu, China) has been of interest to cancer epidemiologists and biologists because, until recently, it was an endemic area for liver cancer, having amongst the highest incidence rates in the world. The establishment of the Qidong Cancer Registry together with the Qidong Liver Cancer Institute in 1972 has charted the patterns of liver cancer incidence and mortality in a stable population throughout a period of enormous economic, social, and environmental changes as well as of improvements in health care delivery. Updated incidence trends in Qidong are described. Notably, the China age-standardized incidence rate for liver cancer has dropped by over 50% in the past several decades. Molecular epidemiologic and genomic deep sequencing studies have affirmed that infection with hepatitis B virus as well as dietary exposure to aflatoxins through contamination of dietary staples such as corn, and to microcystins–blue-green algal toxins found in ditch and pond water – were likely important etiologic factors that account for the high incidence of liver cancer in this region. Public health initiatives to facilitate universal vaccination of newborns against HBV and to improve drinking water sources in this rural area, as well as economic and social mandates serendipitously facilitating dietary diversity, have led to precipitous declines in exposures to these etiologic factors, concomitantly driving substantive declines in the liver cancer incidence seen now in Qidong. In this regard, Qidong serves as a template for the global impact that a package of intervention strategies may exert on cancer burden.展开更多
Silicon monoxide(SiO)is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g−1.The studies to date have been limited to electrodes with a rela-ti...Silicon monoxide(SiO)is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g−1.The studies to date have been limited to electrodes with a rela-tively low mass loading(<3.5 mg cm^(−2)),which has seriously restricted the areal capacity and its potential in practical devices.Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practi-cal technologies.Herein,we report a monolithic three-dimensional(3D)large-sheet holey gra-phene framework/SiO(LHGF/SiO)composite for high-mass-loading electrode.By specifically using large-sheet holey graphene building blocks,we construct LHGF with super-elasticity and exceptional mechanical robustness,which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading.Additionally,the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport.By systematically tailoring microstructure design,we show the LHGF/SiO anode with a mass loading of 44 mg cm^(−2)delivers a high areal capacity of 35.4 mAh cm^(−2)at a current of 8.8 mA cm^(−2)and retains a capacity of 10.6 mAh cm^(−2)at 17.6 mA cm^(−2),greatly exceeding those of the state-of-the-art commercial or research devices.Furthermore,we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm^(−2)delivers an unprecedented areal capacity up to 140.8 mAh cm^(−2).The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.展开更多
Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton cata...Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.展开更多
Lithium-ion batteries(LIBs)have become an indispensable part of our daily life,however,the energy and power capability that LIBs can deliver are lagging far behind the ever-increasing demands of portable electronics a...Lithium-ion batteries(LIBs)have become an indispensable part of our daily life,however,the energy and power capability that LIBs can deliver are lagging far behind the ever-increasing demands of portable electronics and electric vehicles.Metal-sulfur batteries as one of the most promising alternatives to LIBs are receiving rapidly growing research interests due to the extremely high energy density and abundant resources of sulfur.In this short review,we will discuss the state-of-art development of high energy density battery technologies based on sulfur cathode in combination with different metal anodes,with focus on sodium,magnesium and aluminum anodes.We leave lithium-sulfur batteries out of discussion since there are already a large number of nicely organized review papers available.The operation mechanism of various anode materials and the variety of electrolytes used in sulfur batteries will be reviewed.Some perspectives on improving the performances and overcoming the remaining issues in sulfur batteries will be discussed.It is expected that this review will draw more attention to sulfur batteries from both the academic and industrial communities.展开更多
Lithium metal is one of the most promising anode materials for next-generation electrochemical energy storage due to low electrochemical potential and high specific capacity.However,large volume change and uncontrolla...Lithium metal is one of the most promising anode materials for next-generation electrochemical energy storage due to low electrochemical potential and high specific capacity.However,large volume change and uncontrollable formation of lithium dendrite during cycling severely hinder the practical application of rechargeable Li metal batteries.Herein,we report a hierarchically porous Cu covered with lithiophilic CuxO(HPCu-CuxO) via femtosecond laser strategy in about 2 min as current collector for highperformance Li metal batteries.With precisely tunable pore volume and depth as well as lithiophilic CuxO interphase,the HPCu-CuxO not only guides homogeneous Li nucleation,resulting in a smooth and dendrite-free lithium surface,but also provides space to alleviate the volume expansion of Li metal anode,achieving excellent structure stability.Consequently,highly stable Coulombic efficiency and ultralow overpotential of 15 mV even up to 1000 h were achieved at the current density of 1 mA cm^(-2).Moreover,the resultant Li@HPCu-CuxO//LiFePO_(4) full battery delivered outstanding cycle stability and rate capability.These results offer a pathway toward high-energy-density and safe rechargeable Li metal batteries.展开更多
Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated ...Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11-4.92), and Fe concentration (1.31-5.55 mg L-1) and Mn concentration (1.90-5.71 mg L^-1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weath- ering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids signifi- cantly accelerated the dissolution of Fe and Mn; in addi- tion, when the concentration of OA reached 25 mmol L-1, the concentrations of Fe, and Mn were 1.14-67.08 and 1.11-2.32 times as high as those in 0.5 mmol L-1OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.展开更多
Objective: Hepatocellular carcinoma(HCC) development among hepatitis B surface antigen(HBs Ag) carriers shows gender disparity, influenced by underlying liver diseases that display variations in laboratory tests. We a...Objective: Hepatocellular carcinoma(HCC) development among hepatitis B surface antigen(HBs Ag) carriers shows gender disparity, influenced by underlying liver diseases that display variations in laboratory tests. We aimed to construct a risk-stratified HCC prediction model for HBs Ag-positive male adults.Methods: HBs Ag-positive males of 35-69 years old(N=6,153) were included from a multi-center populationbased liver cancer screening study. Randomly, three centers were set as training, the other three centers as validation. Within 2 years since initiation, we administrated at least two rounds of HCC screening using Bultrasonography and α-fetoprotein(AFP). We used logistic regression models to determine potential risk factors,built and examined the operating characteristics of a point-based algorithm for HCC risk prediction.Results: With 2 years of follow-up, 302 HCC cases were diagnosed. A male-ABCD algorithm was constructed including participant's age, blood levels of GGT(γ-glutamyl-transpeptidase), counts of platelets, white cells,concentration of DCP(des-γ-carboxy-prothrombin) and AFP, with scores ranging from 0 to 18.3. The area under receiver operating characteristic was 0.91(0.90-0.93), larger than existing models. At 1.5 points of risk score,26.10% of the participants in training cohort and 14.94% in validation cohort were recognized at low risk, with sensitivity of identifying HCC remained 100%. At 2.5 points, 46.51% of the participants in training cohort and 33.68% in validation cohort were recognized at low risk with 99.06% and 97.78% of sensitivity, respectively. At 4.5 points, only 20.86% of participants in training cohort and 23.73% in validation cohort were recognized at high risk,with positive prediction value of 22.85% and 12.35%, respectively.Conclusions: Male-ABCD algorithm identified individual's risk for HCC occurrence within short term for their HCC precision surveillance.展开更多
This study was designed to evaluate whether the revised 2010 Tumour Node Metastasis (TNM) staging system could lead to a more accurate prediction of the prognosis of renal cell carcinoma (RCC) patients. A total of...This study was designed to evaluate whether the revised 2010 Tumour Node Metastasis (TNM) staging system could lead to a more accurate prediction of the prognosis of renal cell carcinoma (RCC) patients. A total of 1216 patients who had undergone radical nephrectomy or partial nephrectomy for RCC from 2003 to 2011 were enrolled. All of the patients had pathologically confirmed clear cell RCC (ccRCC). All cases were staged by both the 2002 and 2010 TNM staging systems after pathological review, and survival data were collected. Univariate and multivariate Cox regression models were used to evaluate cancer-specific survival (CSS) and progression-free survival (PFS) after surgery. Continuous variables, such as age and tumour diameter, were calculated as mean values and standard deviations (s.d.) or as median values. Survival was calculated by the Kaplan-Meier method, and the log-rank test assessed differences between groups. Statistically significant differences in CSS and PFS were noted among patients in T3 subgroups using the new 2010 staging system. Therefore, the revised 2010 TNM staging system can lead to a more accurate prediction of the prognosis of ccRCC patients. However, when using the revised 2010 staging system, we found that more than 92% of patients (288/313) with T3 tumours were staged in the T3a subgroup, and their survival data were not significantly different from those of patients with T2b tumours. In addition, T2 subclassification failed to independently predict survival in RCC patients.展开更多
Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of appl...Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of applicable K+storage materials which are able to accommodate the relatively large size and high activity of potassium.Here,we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon(SHPNC).The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling,but also provides sufficient void space to relieve volume expansion of electrode and improves its stability.Therefore,KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg-1(calculated based on the total mass of anode and cathode),long lifespan,and ultrafast charge/slow discharge performance.This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.展开更多
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金financialy supported by National Key R&D Program of China(2022YFB2402600)the National Natural Science Foundation of China(22279166)+1 种基金the Research Start-up Funds from Sun Yat-Sen University(200306)the Fundamental Research Funds for the Central Universities,Sun Yat-Sen University(22qntd0101 and 22dfx01)
文摘Pseudocapacitive materials that store charges via reversible surface or near-surface faradaic reactions are capable of overcoming the capacity limitations of electrical double-layer capacitors.Revealing the structure–activity relationship between the microstructural features of pseudocapacitive materials and their electrochemical performance on the atomic scale is the key to build high-performance capacitor-type devices containing ideal pseudocapacitance effect.Currently,the high brightness(flux),and spectral and coherent nature of synchrotron X-ray analytical techniques make it a powerful tool for probing the structure–property relationship of pseudocapacitive materials.Herein,we report a comprehensive and systematic review of four typical characterization techniques(synchrotron X-ray diffraction,pair distribution function[PDF]analysis,soft X-ray absorption spectroscopy,and hard X-ray absorption spectroscopy)for the study of pseudocapacitance mechanisms.In addition,we offered significant insights for understanding and identifying pseudocapacitance mechanisms(surface redox pseudocapacitance,intercalation pseudocapacitance,and the extrinsic pseudocapacitance phenomenon in battery materials)by combining in situ hard XAS and electrochemical analyses.Finally,a perspective for further depth of understanding into the pseudocapacitance mechanism using synchrotron X-ray analytical techniques is proposed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12274168 and 12074141)。
文摘An ultrafast pump-probe spectroscopy system combined with a cryogenic diamond anvil cell(DAC) instrument is developed to investigate the photo-excitation dynamic properties of condensed materials under low temperature and high pressure(LTHP) conditions.The ultrafast dynamics study is performed on Bi_(2)Sr_(2)CaCu_(2)O_(8+δ)(Bi-2212) thin film under LTHP conditions.The superconducting(SC) phase transition has been observed by analyzing the ultrafast dynamics of Bi-2212 as a function of pressure and temperature.Our results suggest that the pump-probe spectroscopy system combined with a cryogenic DAC instrument is an effective method to study the physical mechanism of condensed matter physics at extreme conditions,especially for the SC phase transition.
基金supported by Project of National Ministry of Industry and Information Technology(No.2020-0103-3-1-2)National Natural Science Foundation of China(No.81670217).
文摘BACKGROUND Catheter-based pulmonary vein isolation(PVI) is an effective and well-established intervention for symptomatic paroxysmal atrial fibrillation(PAF). Nevertheless, late recurrences of atrial fibrillation(LRAF) occurring during 3 to 12months are common, and the underlying mechanisms remain elusive. Circular RNAs(circ RNAs) in atrial tissue have been linked to the pathophysiological mechanisms and progression of PAF in a few studies. However, their expression patterns in peripheral blood and regulatory function in LRAF are not clear.METHODS In the present study, the expression profile of circulating circ RNAs in three paired nonvalvular PAF patients with or without LRAF was investigated by high-throughput sequencing and validated by quantitative real-time polymerase chain reaction(q RT-PCR). Bioinformatics analyses, including Gene Ontology(GO), Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis, and circ RNA/mi RNA regulatory network, were performed to predict the functions and potential regulatory roles of differentially expressed(DE) circ RNAs.RESULTS A total of 12,834 circ RNAs, comprising 5,491 down-regulated and 7,343 up-regulated circ RNAs, were found to be DE in blood smaples from the two groups in peripheral blood between LRAF and non-recurrence control individuals. The most enriched GO categories in terms of molecular function, biological process, and cellular component features were catalytic activity,cellular metabolic process, and intracellular part, respectively. The KEGG enrichment study revealed that the most important metabolic process controlled by DE circ RNAs is endocytosis. In the circ RNA/micro RNAs interaction network, four up-regulated circ RNAs(hsa_circ_0002665, hsa_circ_0001953, hsa_circ_0003831, and hsa_circ_0040533) and one down-regulated circ RNA(hsa_circ_0041103) were predicted to play potential regulatory roles in the pathogenesis of LRAF.CONCLUSIONS This investigation discovered the expression pattern of circulating circ RNAs that is indicative of PAF late recurrence, which may serve as risk markers or therapeutic targets for LRAF after PVI.
基金the Key Program of National Natural Science Foundation of China,No.62237001National Natural Science Foundation for Excellent Young Scholars,No.6212200101+2 种基金National Natural Science Foundation for General Program,Nos.62176066 and 61976052Guangdong Provincial Science and Technology Innovation Strategy Fund,No.2019B121203012and Guangzhou Science and Technology Plan,No.202007040005.
文摘In classical smoothed particle hydrodynamics(SPH)fluid simulation approaches,the smoothing length of Lagrangian particles is typically constant.One major disadvantage is the lack of adaptiveness,which may compromise accuracy in fluid regions such as splashes and surfaces.Attempts to address this problem used variable smoothing lengths.Yet the existing methods are computationally complex and non-efficient,because the smoothing length is typically calculated using iterative optimization.Here,we propose an efficient non-iterative SPH fluid simulation method with variable smoothing length(VSLSPH).VSLSPH correlates the smoothing length to the density change,and adaptively adjusts the smoothing length of particles with high accuracy and low computational cost,enabling large time steps.Our experimental results demonstrate the advantages of the VSLSPH approach in terms of its simulation accuracy and efficiency.
基金supported partially by the National Central Cancer Registries of China(the Tumor Follow-up Registration Programs MF2008293,2009-193,and 2010-90)by the National Science and Technology Mega-Projects of China(2012ZX100020009-018 and 2012ZX10002-008)
文摘Background:There have been few reports on long-term survival of gastric cancer patients.This study analyzed the survival data of gastric cancer patients obtained from the population-based Qidong Cancer Registry between 1972 and 2011,providing a basis for evaluation of gastric cancer treatment and prognosis.Methods:The cumulative observed survival rate and relative survival rate of gastric cancer patients were calculated using Hakulinen's method via the SURV3.01 software,which was developed by the Finnish Cancer Registry.The date of the last follow-up for the survival status of the 15,401 registered cases was April 30,2012.Results:The 1-,5-,10-,20-,and 30-year observed survival rates were 33.82%,14.18%,10.35%,6.63%,and 4.19%,respectively,and the 1-,5-,10-,20-,and 30-year relative survival rates were 35.43%,18.13%,17.50%,21.96%,and32.84%,respectively.For males,the corresponding observed survival rates were 34.50%,14.40%,10.42%,6.46%,and4.05%,and the corresponding relative survival rates were 36.23%,18.67%,18.28%,23.73%,and 38.61%.For females,the corresponding observed survival rates were 32.62%,13.80%,10.22%,6.95%,and 4.46%,and the corresponding relative survival rates were 34.03%,17.21%,16.28%,19.70%,and 26.78%.Significant differences in relative survival rates were observed between sexes(P=0.003).For the 15-34,35-44,45-54,55-64,65-74,and 75+ age groups,the 5-year relative survival rates were 16.13%,21.77%,18.63%,12.61%,7.99%,and 2.94%,respectively,and the 10-year relative survival rates were 16.49%,22.83%,20.50%,15.97%,15.88%,and 15.73%,respectively.Remarkable improvement could be observed for the 5-,10-,and 15-year relative survival rates in Qidong beginning in the 1980 s.Conclusion:The survival outcome of registered gastric cancer cases in Qidong showed gradual progress over the past two decades.
基金supported by grants from the US National Institutes of Health (Grant No. R01 CA196610 and R35 CA197222)Chinese National Key Projects (Grant No. 2008ZX10002-015, 2008ZX10002-017, 2012ZX10002009, 2018ZX10732202-001)
文摘Qidong(Jiangsu, China) has been of interest to cancer epidemiologists and biologists because, until recently, it was an endemic area for liver cancer, having amongst the highest incidence rates in the world. The establishment of the Qidong Cancer Registry together with the Qidong Liver Cancer Institute in 1972 has charted the patterns of liver cancer incidence and mortality in a stable population throughout a period of enormous economic, social, and environmental changes as well as of improvements in health care delivery. Updated incidence trends in Qidong are described. Notably, the China age-standardized incidence rate for liver cancer has dropped by over 50% in the past several decades. Molecular epidemiologic and genomic deep sequencing studies have affirmed that infection with hepatitis B virus as well as dietary exposure to aflatoxins through contamination of dietary staples such as corn, and to microcystins–blue-green algal toxins found in ditch and pond water – were likely important etiologic factors that account for the high incidence of liver cancer in this region. Public health initiatives to facilitate universal vaccination of newborns against HBV and to improve drinking water sources in this rural area, as well as economic and social mandates serendipitously facilitating dietary diversity, have led to precipitous declines in exposures to these etiologic factors, concomitantly driving substantive declines in the liver cancer incidence seen now in Qidong. In this regard, Qidong serves as a template for the global impact that a package of intervention strategies may exert on cancer burden.
基金support by the National Natural Science Foundation of China(Nos.52074113,22005091)the Fundamental Research Funds of the Central Universities(No.531107051048)+6 种基金the Changsha Municipal Natural Science Foundantion(Grant No.43184)the CITIC Metals Ningbo Energy Co.Ltd.(No.H202191380246)Xidong Duan acknowledges support by the National Natural Science Foundation of China(Nos.51991343,51991340,61804050 and 51872086)the Hunan Key Laboratory of Two-Dimensional Materials(No.2018TP1010)Junfei Liang acknowledges support by the National Natural Science Foundation of China(No.U1910208)the National Natural Science Foundation of Shanxi Province(No.201901D111137)Tao Wang acknowledges support by the National Natural Science Foundation of China(No.22005092).
文摘Silicon monoxide(SiO)is an attractive anode material for next-generation lithium-ion batteries for its ultra-high theoretical capacity of 2680 mAh g−1.The studies to date have been limited to electrodes with a rela-tively low mass loading(<3.5 mg cm^(−2)),which has seriously restricted the areal capacity and its potential in practical devices.Maximizing areal capacity with such high-capacity materials is critical for capitalizing their potential in practi-cal technologies.Herein,we report a monolithic three-dimensional(3D)large-sheet holey gra-phene framework/SiO(LHGF/SiO)composite for high-mass-loading electrode.By specifically using large-sheet holey graphene building blocks,we construct LHGF with super-elasticity and exceptional mechanical robustness,which is essential for accommodating the large volume change of SiO and ensuring the structure integrity even at ultrahigh mass loading.Additionally,the 3D porous graphene network structure in LHGF ensures excellent electron and ion transport.By systematically tailoring microstructure design,we show the LHGF/SiO anode with a mass loading of 44 mg cm^(−2)delivers a high areal capacity of 35.4 mAh cm^(−2)at a current of 8.8 mA cm^(−2)and retains a capacity of 10.6 mAh cm^(−2)at 17.6 mA cm^(−2),greatly exceeding those of the state-of-the-art commercial or research devices.Furthermore,we show an LHGF/SiO anode with an ultra-high mass loading of 94 mg cm^(−2)delivers an unprecedented areal capacity up to 140.8 mAh cm^(−2).The achievement of such high areal capacities marks a critical step toward realizing the full potential of high-capacity alloy-type electrode materials in practical lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(21876114,21761142011,51572174)Shanghai Government(17SG44)+2 种基金International Joint Laboratory on Resource Chemistry(IJLRC)Ministry of Education of China(PCSIRT_IRT_16R49)supported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning and Shuguang Research Program of Shanghai Education Committee~~
文摘Ordered mesoporous Fe/TiO2 was prepared by an evaporation-induced self-assembly method. The iron ions were in situ embedded in the pore wall of the TiO2 framework. The catalyst has excellent light-assisted Fenton catalytic performance under UV and visible light irradiation. X-ray diffraction and transmission electron microscopy results showed that the TiO2 samples have an ordered two-dimensional hexagonal pore structure and an anatase phase structure with high crystallinity. The ordered pore structure of the TiO2 photocatalyst with a large specific surface area is beneficial to mass transfer and light harvesting. Furthermore, iron ions can be controlled by embedding them into the TiO2 framework to prevent iron ion loss and inactivation. After five cycles, the reaction rate of the ordered mesoporous Fe/TiO2 remained unchanged, indicating that the material has stable performance and broad application prospects for the purification of environmental pollutants.
基金supported by the National Natural Science Foundation of China (No. 21671096, and No. 21603094)the Natural Science Foundation of Shenzhen (No. JCYJ20170412153139454 and, No. JCYJ20170817110251498)the Guangdong Special Support for the Science and Technology Leading Young Scientist (No. 2016TQ03C919)
文摘Lithium-ion batteries(LIBs)have become an indispensable part of our daily life,however,the energy and power capability that LIBs can deliver are lagging far behind the ever-increasing demands of portable electronics and electric vehicles.Metal-sulfur batteries as one of the most promising alternatives to LIBs are receiving rapidly growing research interests due to the extremely high energy density and abundant resources of sulfur.In this short review,we will discuss the state-of-art development of high energy density battery technologies based on sulfur cathode in combination with different metal anodes,with focus on sodium,magnesium and aluminum anodes.We leave lithium-sulfur batteries out of discussion since there are already a large number of nicely organized review papers available.The operation mechanism of various anode materials and the variety of electrolytes used in sulfur batteries will be reviewed.Some perspectives on improving the performances and overcoming the remaining issues in sulfur batteries will be discussed.It is expected that this review will draw more attention to sulfur batteries from both the academic and industrial communities.
基金financially supported by the Fundamental Research Funds of the Central Universities(no.531107051048)the support from the Hunan Key Laboratory of Two-Dimensional Materials(No.801200005)。
文摘Lithium metal is one of the most promising anode materials for next-generation electrochemical energy storage due to low electrochemical potential and high specific capacity.However,large volume change and uncontrollable formation of lithium dendrite during cycling severely hinder the practical application of rechargeable Li metal batteries.Herein,we report a hierarchically porous Cu covered with lithiophilic CuxO(HPCu-CuxO) via femtosecond laser strategy in about 2 min as current collector for highperformance Li metal batteries.With precisely tunable pore volume and depth as well as lithiophilic CuxO interphase,the HPCu-CuxO not only guides homogeneous Li nucleation,resulting in a smooth and dendrite-free lithium surface,but also provides space to alleviate the volume expansion of Li metal anode,achieving excellent structure stability.Consequently,highly stable Coulombic efficiency and ultralow overpotential of 15 mV even up to 1000 h were achieved at the current density of 1 mA cm^(-2).Moreover,the resultant Li@HPCu-CuxO//LiFePO_(4) full battery delivered outstanding cycle stability and rate capability.These results offer a pathway toward high-energy-density and safe rechargeable Li metal batteries.
基金sponsored by The Innovative Talent Team Construction Project for Science and Technology of Guizhou Province (Project Number [2012]4005)
文摘Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11-4.92), and Fe concentration (1.31-5.55 mg L-1) and Mn concentration (1.90-5.71 mg L^-1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weath- ering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids signifi- cantly accelerated the dissolution of Fe and Mn; in addi- tion, when the concentration of OA reached 25 mmol L-1, the concentrations of Fe, and Mn were 1.14-67.08 and 1.11-2.32 times as high as those in 0.5 mmol L-1OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.
基金supported by State Key Projects Specialized on Infectious Diseases (No. 2017ZX10201201-006)Key research projects for precision medicine (No. 2017YFC0908103)+1 种基金Innovation Fund for Medical Sciences of Chinese Academy of Medical Sciences (CIFMS, No. 2019-I2M-2-004, 2016-I2M-1-007, 2019-I2M-1-003)National Natural Science Foundation Fund (No. 81972628, No. 81974492)。
文摘Objective: Hepatocellular carcinoma(HCC) development among hepatitis B surface antigen(HBs Ag) carriers shows gender disparity, influenced by underlying liver diseases that display variations in laboratory tests. We aimed to construct a risk-stratified HCC prediction model for HBs Ag-positive male adults.Methods: HBs Ag-positive males of 35-69 years old(N=6,153) were included from a multi-center populationbased liver cancer screening study. Randomly, three centers were set as training, the other three centers as validation. Within 2 years since initiation, we administrated at least two rounds of HCC screening using Bultrasonography and α-fetoprotein(AFP). We used logistic regression models to determine potential risk factors,built and examined the operating characteristics of a point-based algorithm for HCC risk prediction.Results: With 2 years of follow-up, 302 HCC cases were diagnosed. A male-ABCD algorithm was constructed including participant's age, blood levels of GGT(γ-glutamyl-transpeptidase), counts of platelets, white cells,concentration of DCP(des-γ-carboxy-prothrombin) and AFP, with scores ranging from 0 to 18.3. The area under receiver operating characteristic was 0.91(0.90-0.93), larger than existing models. At 1.5 points of risk score,26.10% of the participants in training cohort and 14.94% in validation cohort were recognized at low risk, with sensitivity of identifying HCC remained 100%. At 2.5 points, 46.51% of the participants in training cohort and 33.68% in validation cohort were recognized at low risk with 99.06% and 97.78% of sensitivity, respectively. At 4.5 points, only 20.86% of participants in training cohort and 23.73% in validation cohort were recognized at high risk,with positive prediction value of 22.85% and 12.35%, respectively.Conclusions: Male-ABCD algorithm identified individual's risk for HCC occurrence within short term for their HCC precision surveillance.
文摘This study was designed to evaluate whether the revised 2010 Tumour Node Metastasis (TNM) staging system could lead to a more accurate prediction of the prognosis of renal cell carcinoma (RCC) patients. A total of 1216 patients who had undergone radical nephrectomy or partial nephrectomy for RCC from 2003 to 2011 were enrolled. All of the patients had pathologically confirmed clear cell RCC (ccRCC). All cases were staged by both the 2002 and 2010 TNM staging systems after pathological review, and survival data were collected. Univariate and multivariate Cox regression models were used to evaluate cancer-specific survival (CSS) and progression-free survival (PFS) after surgery. Continuous variables, such as age and tumour diameter, were calculated as mean values and standard deviations (s.d.) or as median values. Survival was calculated by the Kaplan-Meier method, and the log-rank test assessed differences between groups. Statistically significant differences in CSS and PFS were noted among patients in T3 subgroups using the new 2010 staging system. Therefore, the revised 2010 TNM staging system can lead to a more accurate prediction of the prognosis of ccRCC patients. However, when using the revised 2010 staging system, we found that more than 92% of patients (288/313) with T3 tumours were staged in the T3a subgroup, and their survival data were not significantly different from those of patients with T2b tumours. In addition, T2 subclassification failed to independently predict survival in RCC patients.
基金financially supported by the Fundamental Research Funds of the Central Universities(No.531118010112)the Double FirstClass University Initiative of Hunan University(No.531109100004)+1 种基金the Fundamental Research Funds of the Central Universities(No.531107051048)support from the Hunan Key Laboratory of TwoDimensional Materials(No.801200005)。
文摘Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of applicable K+storage materials which are able to accommodate the relatively large size and high activity of potassium.Here,we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon(SHPNC).The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling,but also provides sufficient void space to relieve volume expansion of electrode and improves its stability.Therefore,KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg-1(calculated based on the total mass of anode and cathode),long lifespan,and ultrafast charge/slow discharge performance.This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.