High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achiev...High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.展开更多
Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmog...Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides.In this paper,we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory.Our results show that for copper and germanium materials,the largest cosmogenic background comes from 3 H and57,58,60Co,and 3 H and 68Ge,respectively,which all have yields on the order of 10-7 kg-1 day-1.The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10-6μBq kg-1.展开更多
Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In th...Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In this work, the material discrimination ability of muon scattering tomography is evaluated based on experiments at the Tsinghua University cosmic ray muon tomography facility,with four materials: flour(as drugs substitute), aluminum,steel, and lead. The features of the different materials could be discriminated with cluster analysis and classifiers based on support vector machine. The overall discrimination precisions for these four materials could reach 70, 95, and 99% with 1-, 5-, and 10-min-long measurement,respectively.展开更多
The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of lim...The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the Na I(Tl) scintillation detector's energy resolution. This paper, based on the physical process of c photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate c photons with Na I(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests,such as simulating a multi-characteristic energy c-ray spectrum and simulating synthesized overlapping peaks cray spectrum. An inversion decomposition of the c instrument response spectrum for measured samples(U series, Th series and U–Th mixed sources, among others)can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects.展开更多
The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we...The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we report our measurements of key parameters for detector modeling in a commercial p-type BEGe detector.Point-like sources are used to investigate energy resolution and linearity of the detector.A cylindrical volume source is used for efficiency calibration.With an assembled device for source positioning and a collimated ^(133)Ba source,the detector is scanned to check its active volume.Using an^(241)Am point-like source,the dead layer thicknesses is measured at about 0.17 mm on the front and 1.18 mm on the side.The detector characterization is of importance for BEGe detectors to be used in the ovββ experiments at China JinPing underground Laboratory(CJPL).展开更多
Objective:The purpose of this study is to explore RT-PCR method to set up the examination platform for detecting circulating tumor cells(CTC) in peripheral blood from metastatic breast cancer patients.The primary endp...Objective:The purpose of this study is to explore RT-PCR method to set up the examination platform for detecting circulating tumor cells(CTC) in peripheral blood from metastatic breast cancer patients.The primary endpoint is to find out the correlation of existence of CTC with clinical responses and progression-free survival(PFS).Methods:The breast cancer cell line MCF-7 was serially diluted into the peripheral blood from 45 healthy donors to set up the sensitivity of RT-PCR assay.The expression of CK19 mRNA was amplified from both 49 patients and 45 healthy donors respectively.The CK19 protein quantity from plasma was measured by competitive inhibition ELISA assay.Results:The sensitivity of RT-PCR could reach 1/106?107 white blood cells with specificity of 95.6%.The objective response rate(ORR) of patients with CK19 mRNA-negative undertaken one cycle chemotherapy was significantly higher than those with positive(P0.0001).PFS among CK19 mRNA-negative patients was also increased,although there was no significance(P=0.098).The results of ELISA assay showed that CK19 protein was decreased significantly after one cycle chemotherapy,which gave rise to a little higher ORR(P=0.015) and increased PFS(P=0.016).Conclusion:Patients with unamplified CK19 mRNA after one cycle chemotherapy could achieve better radiographic evaluation and increased PFS,which was showed to be of consistency with the CK19 protein assay among the patients treated.展开更多
The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performa...The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performance of HPGe must be further improved to achieve superior energy resolution,low noise,and long-term reliability.In this study,we combine computational simulations and experimental comparisons to deeply understand the passivation mechanism of Ge.The surface passivation effect is calculated and inferred from the band structure and density of interface states,and further con-firmed by the minority carrier lifetime.The first-principles method based on the density functional theory was adopted to systematically study the lattice structure,band structure,and density of state(DOS)of four different systems:Ge–H,Ge–Ge-NH 2,Ge-OH,and Ge-SiO_(x).The electronic char-acteristics of the Ge(100)unit cell with different passi-vation groups and Si/O atomic ratios were compared.This shows that H,N,and O atoms can effectively reduce the surface DOS of the Ge atoms.The passivation effect of the SiO_(x) group varied with increasing O atoms and Si/O atomic ratios.Experimentally,SiO and SiO_(2) passivation films were fabricated by electron beam evaporation on a Ge substrate,and the valence state of Si and resistivity was measured to characterize the film.The minority carrier lifetime of Ge-SiO_(2) is 21.3 ls,which is approximately quadruple that of Ge-SiO.The passivation effect and mechanism are discussed in terms of hopping conduction and surface defect density.This study builds a relationship between the passivation effect and different termination groups,and provides technical support for the potential passivation layer,which can be applied in Ge detectors with ultralow energy thresholds and especially in HPGe for rare-event physics detection experiments in future.展开更多
Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for re...Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties.展开更多
In vivo measurement of radioactivity based on various body counters is arguably the leading measure used to determine the distribution and activity of radionuclides in human subjects,such as I-131 in the thyroid,Am-24...In vivo measurement of radioactivity based on various body counters is arguably the leading measure used to determine the distribution and activity of radionuclides in human subjects,such as I-131 in the thyroid,Am-241 in the lungs,and Pb-210 in the skull.Throughout the measurements,the radiation background is the key factor that determines the sensitivity of the counter.Therefore,to facilitate in vivo measurements,a well-designed shielding room is required to create a low-background environment.However,because the compositions of the radiation background are quite complicated,the respective contributions from each source remain obscure,which places a considerable burden on seeking an optimized design of shielding rooms that strikes the optimum balance between the construction cost and background suppression effect.In this study,we conducted a systematic experimental investigation on the radiation background outside and inside four representative body counters with assorted designs using a variety of radiation detectors,including high-purity germanium detectors,CdZnTe detector,radon emanometer,and gamma-ray dosimeter.By carefully controlling the experimental conditions and synergetic analysis of the measurement results,in conjunction with previous studies,we separated and determined the relative contributions induced by environmental radiation(4%),airborne radon and its daughters(2%),the normal radioactivity of human subjects arising from K-40(58%),cosmic rays(12%),and radioactivity in shielding materials and measuring instruments(24%).Furthermore,based on these results,we discuss practical guidelines to design a shielding room for body counters.展开更多
We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A...We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.展开更多
基金supported by the National Natural Science Foundation of China(No.12005017).
文摘High-purity germanium(HPGe)detectors,which are used for direct dark matter detection,have the advantages of a low threshold and excellent energy resolution.The surface passivation of HPGe has become crucial for achieving an extremely low energy threshold.In this study,first-principles simulations,passivation film preparation,and metal oxide semiconductor(MOS)capacitor characterization were combined to study surface passivation.Theoretical calculations of the energy band structure of the -H,-OH,and -NH_(2) passivation groups on the surface of Ge were performed,and the interface state density and potential with five different passivation groups with N/O atomic ratios were accurately analyzed to obtain a stable surface state.Based on the theoretical calculation results,the surface passivation layers of the Ge_(2)ON_(2) film were prepared via magnetron sputtering in accordance with the optimum atomic ratio structure.The microstructure,C-V,and I-V electrical properties of the layers,and the passivation effect of the Al/Ge_(2)ON_(2)/Ge MOS were characterized to test the interface state density.The mean interface state density obtained by the Terman method was 8.4×10^(11) cm^(-2) eV^(-1).The processing of germanium oxynitrogen passivation films is expected to be used in direct dark matter detection of the HPGe detector surface passivation technology to reduce the detector leakage currents.
基金supported by the National Natural Science Foundation of China(No.U1865205).
文摘Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides.In this paper,we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory.Our results show that for copper and germanium materials,the largest cosmogenic background comes from 3 H and57,58,60Co,and 3 H and 68Ge,respectively,which all have yields on the order of 10-7 kg-1 day-1.The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10-6μBq kg-1.
文摘Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In this work, the material discrimination ability of muon scattering tomography is evaluated based on experiments at the Tsinghua University cosmic ray muon tomography facility,with four materials: flour(as drugs substitute), aluminum,steel, and lead. The features of the different materials could be discriminated with cluster analysis and classifiers based on support vector machine. The overall discrimination precisions for these four materials could reach 70, 95, and 99% with 1-, 5-, and 10-min-long measurement,respectively.
基金supported by National Natural Science Foundation of China(No.11365001)National Major Scientific Equipment Development Projects(No.041514065)+1 种基金Natural Science Foundation of Jiangxi(No.20161BAB201035)Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China Institute of Technology(No.RGET1316)
文摘The Na I(Tl) scintillation detector has a number of unique advantages, including wide use, high light yield,and its low price. It is difficult to obtain the decomposition of instrument response spectrum because of limitations associated with the Na I(Tl) scintillation detector's energy resolution. This paper, based on the physical process of c photons released from decay nuclides, generating an instrument response spectrum, uses the Monte Carlo method to simulate c photons with Na I(Tl) scintillation detector interaction. The Monte Carlo response matrix is established by different single energy γ-rays with detector effects. The Gold and the improved Boosted-Gold iterative algorithms have also been used in this paper to solve the response matrix parameters through decomposing tests,such as simulating a multi-characteristic energy c-ray spectrum and simulating synthesized overlapping peaks cray spectrum. An inversion decomposition of the c instrument response spectrum for measured samples(U series, Th series and U–Th mixed sources, among others)can be achieved under the response matrix. The decomposing spectrum can be better distinguished between the similar energy characteristic peaks, which improve the error levels of activity analysis caused by the overlapping peak with significant effects.
基金supported by National Natural Science Foundation of China(Nos.11175099&11355001)Tsinghua University Initiative Scientific Research Program(Nos.20151080354&2014Z21016)
文摘The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we report our measurements of key parameters for detector modeling in a commercial p-type BEGe detector.Point-like sources are used to investigate energy resolution and linearity of the detector.A cylindrical volume source is used for efficiency calibration.With an assembled device for source positioning and a collimated ^(133)Ba source,the detector is scanned to check its active volume.Using an^(241)Am point-like source,the dead layer thicknesses is measured at about 0.17 mm on the front and 1.18 mm on the side.The detector characterization is of importance for BEGe detectors to be used in the ovββ experiments at China JinPing underground Laboratory(CJPL).
基金supported by a grant from the Beijing Capital Development Foundation for Medical Sciences(No.2007-2053)
文摘Objective:The purpose of this study is to explore RT-PCR method to set up the examination platform for detecting circulating tumor cells(CTC) in peripheral blood from metastatic breast cancer patients.The primary endpoint is to find out the correlation of existence of CTC with clinical responses and progression-free survival(PFS).Methods:The breast cancer cell line MCF-7 was serially diluted into the peripheral blood from 45 healthy donors to set up the sensitivity of RT-PCR assay.The expression of CK19 mRNA was amplified from both 49 patients and 45 healthy donors respectively.The CK19 protein quantity from plasma was measured by competitive inhibition ELISA assay.Results:The sensitivity of RT-PCR could reach 1/106?107 white blood cells with specificity of 95.6%.The objective response rate(ORR) of patients with CK19 mRNA-negative undertaken one cycle chemotherapy was significantly higher than those with positive(P0.0001).PFS among CK19 mRNA-negative patients was also increased,although there was no significance(P=0.098).The results of ELISA assay showed that CK19 protein was decreased significantly after one cycle chemotherapy,which gave rise to a little higher ORR(P=0.015) and increased PFS(P=0.016).Conclusion:Patients with unamplified CK19 mRNA after one cycle chemotherapy could achieve better radiographic evaluation and increased PFS,which was showed to be of consistency with the CK19 protein assay among the patients treated.
基金supported by the National Natural Science Foundation of China Youth Fund(No.12005017)。
文摘The point-contact high-purity germanium detector(HPGe)has the advantages of low background,low energy threshold,and high energy resolution and can be applied in the detection of rare-event physics.However,the performance of HPGe must be further improved to achieve superior energy resolution,low noise,and long-term reliability.In this study,we combine computational simulations and experimental comparisons to deeply understand the passivation mechanism of Ge.The surface passivation effect is calculated and inferred from the band structure and density of interface states,and further con-firmed by the minority carrier lifetime.The first-principles method based on the density functional theory was adopted to systematically study the lattice structure,band structure,and density of state(DOS)of four different systems:Ge–H,Ge–Ge-NH 2,Ge-OH,and Ge-SiO_(x).The electronic char-acteristics of the Ge(100)unit cell with different passi-vation groups and Si/O atomic ratios were compared.This shows that H,N,and O atoms can effectively reduce the surface DOS of the Ge atoms.The passivation effect of the SiO_(x) group varied with increasing O atoms and Si/O atomic ratios.Experimentally,SiO and SiO_(2) passivation films were fabricated by electron beam evaporation on a Ge substrate,and the valence state of Si and resistivity was measured to characterize the film.The minority carrier lifetime of Ge-SiO_(2) is 21.3 ls,which is approximately quadruple that of Ge-SiO.The passivation effect and mechanism are discussed in terms of hopping conduction and surface defect density.This study builds a relationship between the passivation effect and different termination groups,and provides technical support for the potential passivation layer,which can be applied in Ge detectors with ultralow energy thresholds and especially in HPGe for rare-event physics detection experiments in future.
基金supported by the National Natural Science Foundation of China(Nos.12141502 and 12005017).
文摘Polytetrafluoroethylene(PTFE)is a low-background polymer that is applied to several applications in rare-event detection and underground low-background experiments.PTFE-based electronic substrates are important for reducing the detection limit of high-purity germanium detectors and scintillator calorimeters,which are widely applied in dark matter and 0υββdetection experiments.The traditional adhesive bonding method between PTFE and copper is not conducive to working in liquid nitrogen and extremely low-temperature environments.To avoid adhesive bonding,PTFE must be processed for surface metallization owing to the mismatch between the PTFE and copper conductive layer.Low-background PTFE matrix composites(m-PTFE)were selected to improve the electrical and mechanical properties of PTFE by introducing SiO_(2)/TiO_(2) particles.The microstructures,surface elements,and electrical properties of PTFE and m-PTFE were characterized and analyzed following ion implantation.PTFE and m-PTFE surfaces were found to be broken,degraded,and cross-linked by ion implantation,resulting in C=C conjugated double bonds,increased surface energy,and increased surface roughness.Comparably,the surface roughness,bond strength,and conjugated double bonds of m-PTFE were significantly more intense than those of PTFE.Moreover,the interface bonding theory between PTFE and the metal copper foil was analyzed using the direct metallization principle.Therefore,the peel strength of the optimized electronic substrates was higher than that of the industrial standard at extremely low temperatures,while maintaining excellent electrical properties.
基金supported by the Central University Basic Scientific Research Business Expenses Special Funds under the project name Research on Applied Physics under Low 385 Radiation Background(No. 2018NTST07)2021 Nuclear and Radiation Safety Technic Evaluation Project,Ministry of Ecology and Environment (No.NSCCG2021-052)
文摘In vivo measurement of radioactivity based on various body counters is arguably the leading measure used to determine the distribution and activity of radionuclides in human subjects,such as I-131 in the thyroid,Am-241 in the lungs,and Pb-210 in the skull.Throughout the measurements,the radiation background is the key factor that determines the sensitivity of the counter.Therefore,to facilitate in vivo measurements,a well-designed shielding room is required to create a low-background environment.However,because the compositions of the radiation background are quite complicated,the respective contributions from each source remain obscure,which places a considerable burden on seeking an optimized design of shielding rooms that strikes the optimum balance between the construction cost and background suppression effect.In this study,we conducted a systematic experimental investigation on the radiation background outside and inside four representative body counters with assorted designs using a variety of radiation detectors,including high-purity germanium detectors,CdZnTe detector,radon emanometer,and gamma-ray dosimeter.By carefully controlling the experimental conditions and synergetic analysis of the measurement results,in conjunction with previous studies,we separated and determined the relative contributions induced by environmental radiation(4%),airborne radon and its daughters(2%),the normal radioactivity of human subjects arising from K-40(58%),cosmic rays(12%),and radioactivity in shielding materials and measuring instruments(24%).Furthermore,based on these results,we discuss practical guidelines to design a shielding room for body counters.
基金Supported by the National Key Research and Development Program of China(2017YFA0402201,2022YFA1604701,2022YFA1605000)the National Natural Science Foundation of China(12322511,12175112,12005111,11725522)。
文摘We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.