期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
Microstructure and mechanical properties of BFe10 cupronickel alloy tubes fabricated by a horizontal continuous casting with heating-cooling combined mold technology 被引量:13
1
作者 Jun Mei Xin-hua Liu jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第4期339-347,共9页
A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microst... A new horizontal continuous casting method with heating-cooling combined mold (HCCM) technology was explored for fabri- cating high-quality thin-wall cupronickel alloy tubes used for heat exchange pipes. The microstructure and mechanical properties of BFe 10 cupronickel alloy tubes fabricated by HCCM and traditional continuous casting (cooling mold casting) were comparatively investigated. The results show that the tube fabricated by HCCM has smooth internal and external surfaces without any defects, and its internal and external surface roughnesses are 0.64 μm and 0.85 μm, respectively. The tube could be used for subsequent cold processing without other treatments such as surface planning, milling and acid-washing. This indicates that HCCM can effectively reduce the process flow and improve the pro- duction efficiency of a BFel0 cupronickel alloy tube. The tube has columnar grains along its axial direction with a major casting texture of {012}〈 621 〉. Compared with cooling mold casting (6 = 36.5%), HCCM can improve elongation (3 = 46.3%) by 10% with a slight loss of strength, which indicates that HCCM remarkably improves the cold extension performance of a BFe 10 cupronickel alloy tube. 展开更多
关键词 cupronickel alloys thin-wall tubes continuous casting microstructure mechanical properties
下载PDF
Liquid-solid interface control of BFe10-1-1 cupronickel alloy tubes during HCCM horizontal continuous casting and its effect on the microstructure and properties 被引量:10
2
作者 Jun Mei Xin-hua Liu +2 位作者 Yan-bin Jiang Song Chen jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第8期748-758,共11页
Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the in... Based on horizontal continuous casting with a heating-cooling combined mold (HCCM) technology, this article investigated the effects of processing parameters on the liquid-solid interface (LSI) position and the influence of LSI position on the surface quality, microstructure, texture, and mechanical properties of a BFe10-1-1 tube (φ50 mm × 5 mm). HCCM efficiently improves the temperature gradient in front of the LSI. Through controlling the LSI position, the radial columnar-grained microstructure that is commonly generated by cooling mold casting can be eliminated, and the axial columnar-grained microstructure can be obtained. Under the condition of 1250℃ melting and holding temperature, 1200-1250℃ mold heating temperature, 50-80 mm/min mean drawing speed, and 500-700 L/h cooling water flow rate, the LSI position is located at the middle of the transition zone or near the entrance of the cooling section, and the as-cast tube not only has a strong axial columnar-grained microstructure ({hkl}〈621〉, {hkl}〈221〉) due to strong axial heating conduction during solidification but also has smooth internal and external surfaces without cracks, scratches, and other macroscopic defects due to short solidified shell length and short contact length between the tube and the mold at high temperature. The elongation and tensile strength of the tube are 46.0%-47.2% and 210-221 MPa, respectively, which can be directly used for the subsequent cold-large-strain processing. 展开更多
关键词 copper-nickel alloys TUBES continuous casting INTERFACES textures mechanical properties
下载PDF
Warm/cold rolling processes for producing Fe-6.5wt% Si electrical steel with columnar grains 被引量:10
3
作者 Hua-dong Fu Zhi-hao Zhang +2 位作者 Hong-jiang Pan Yuan-ke Mo jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期535-540,共6页
A new technical prototype for producing Fe-6.5wt% Si electrical steel sheets by directional solidification, heat treatment before rolling, warm rolling, and cold rolling was proposed in the present study. The formabil... A new technical prototype for producing Fe-6.5wt% Si electrical steel sheets by directional solidification, heat treatment before rolling, warm rolling, and cold rolling was proposed in the present study. The formability of Fe-6.5wt% Si electrical steel before rolling and the reasonable process parameters of this technical prototype were obtained. Experimental results reveal that the formability of Fe-6.5wt% Si electrical steel is improved significantly under the combination of directional solidification and heat treatment before rolling. Fe-6.5wt% Si electrical steel sheets with the thickness of 0.15 ram, bright surface, few edge cracks, and high rolling yield can be successfully fabricated using this technology without any intermediate annealing during the whole rolling. The combination of directional solidification, heat treatment before rolling, warm rolling, and cold rolling can work as a new process for highly efficient and compact fabrication of Fe-6.5wt% Si electrical steel sheets. 展开更多
关键词 silicon steel DEFORMATION ROLLING mechanical properties PLASTICITY
下载PDF
Cross-sectional structure, microstructure and mechanical property evolutions of brass cladding pure copper stranded wire composite during drawing 被引量:8
4
作者 Yan-bin JIANG Yong-shuai LI +1 位作者 Yu LEI jian-xin xie 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1857-1872,共16页
A solid/liquid continuous casting and composite technology was used to produce d8.5 mm brass cladding pure copper stranded wire composite billet and the composite billet was then drawn. The results showed that the com... A solid/liquid continuous casting and composite technology was used to produce d8.5 mm brass cladding pure copper stranded wire composite billet and the composite billet was then drawn. The results showed that the composite billet had good surface quality, metallurgical bonding interface between brass and pure copper as well as elongation of 53.1%. Synergistic deformation degree between pure copper wire and brass cladding layer was high during drawing. With an increase of the total deformation amount, the plastic deformation of the pure copper wire reduced triangular arc gaps between the pure copper wires and the triangular arc gaps were fully filled at 50%. When the total deformation amount was increased to 63%, dislocation cells and microbands successively formed in the pure copper wire. In the brass cladding layer, planar dislocation networks, twins and shear bands formed successively, and the main deformation mechanisms were dislocation sliding, twinning and shear deformation. The tensile strength increased from 240 MPa of the composite billet to 519 MPa of the one with the deformation amount of 63%, but the elongation decreased from 53.1% to 3.2%. A process of solid/liquid continuous casting and composite forming→drawing can work as a new compact method to produce brass cladding pure copper stranded wire composite as railway through grounding wire. 展开更多
关键词 solid/liquid continuous casting composite wire deformation microstructure evolution mechanical properties
下载PDF
Numerical simulation of temperature field in horizontal core-filling continuous casting for copper cladding aluminum rods 被引量:6
5
作者 Ya-jun Su Xin-hua Liu +2 位作者 Yong-fu Wu Hai-you Huang jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第7期684-692,共9页
The steady-state temperature field of horizontal core-filling continuous casting (HCFC) for producing copper cladding aluminum rods was simulated by finite element method to investigate the effects of key processing... The steady-state temperature field of horizontal core-filling continuous casting (HCFC) for producing copper cladding aluminum rods was simulated by finite element method to investigate the effects of key processing parameters on the positions of solid-liquid interfaces (SLIs) of copper and aluminum. It is found that mandrel tube length and mean withdrawing speed have significant effects on the SLI positions of both copper and aluminum. Aluminum casting temperature (TAI) (1003-1123 K) and secondary cooling water flux (600-900 L.h-1) have little effect on the SLI of copper but cause the SLI of aluminum to move 2-4 mm. When TA1 is in a range of 1043-1123 K, the liquid aluminum can fill continuously into the pre-solidified copper tube. Based on the numerical simulation, reasonable processing parameters were determined. 展开更多
关键词 metal cladding copper ALUMINUM continuous casting INTERFACES computer simulation
下载PDF
FEM analysis of metal flowing behaviors in porthole die extrusion based on the mesh reconstruction technology of the welding process 被引量:6
6
作者 Dong-nan Huang Zhi-hao Zhang +1 位作者 Jing-yuan Li jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2010年第6期763-769,共7页
A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical si... A reconstruction technology of finite element meshes based on reversal engineering was applied to solve mesh penetration and separation in the finite element simulation for the divergent extrusion. The 3D numerical simulation of the divergent extrusion process in- cluding the welding stage for complicated hollow sections was conducted. Based on the analysis of flowing behaviors, the flowing velocities of the alloy in portholes and near the welding planes were properly controlled through optimizing the expansion angle as well as porthole ar- eas and positions. After the die structure optimization, defects such as warp, wrist, and the wavelike are eliminated, which improves the sec- tion-forming quality. Meanwhile, the temperature distribution in the cross section is uniform. Especially, the temperature of the C-shape notch with a larger thickness is lower than that of other regions in the cross section, which is beneficial for balancing the alloy flowing velocity. 展开更多
关键词 numerical simulation EXTRUSION metal forming metal flow RECONSTRUCTION
下载PDF
Influence of yttrium on the structure and magnetostriction of Fe_(83)Ga_(17) alloy 被引量:5
7
作者 Xi-ming Xiao Xue-xu Gao +1 位作者 Ji-heng Li jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期849-855,共7页
Polycrystalline Fe83Ga17 alloy rods with various amounts of yttrium were prepared by high vacuum induction melting. It is found that yttrium addition has a significant effect on the structure and magnetostriction of F... Polycrystalline Fe83Ga17 alloy rods with various amounts of yttrium were prepared by high vacuum induction melting. It is found that yttrium addition has a significant effect on the structure and magnetostriction of Fes3Ga17 alloy. The small addition of yttrium alters the solidification character and the grain shape of Fe83Ga17 alloy, and as a result, columnar grains with the 〈100〉 preferential direction are pro- duced. Yttrium addition improves the magnetostrictive performance of the as-cast Fes3Ga17 alloy. The magnetostriction values of the as-cast alloy with 0.32at% and 0.64at% yttrium addition go up to 119×10^-6 and 137×10^-6 under 15 MPa compressive stress, respectively. The energy dispersive spectroscopy (EDS) result shows that almost all of the yttrium atoms exist in the Y2Fe17-xGax phase. A small amount of this kind of secondary phase cannot obviously increase the saturate magnetic field. 展开更多
关键词 gallium alloys iron alloys YTTRIUM magnetostfiction SUPERCOOLING polycrystallirte materials
下载PDF
Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt% Be alloys 被引量:6
8
作者 Shuang-jiang He Yan-bin Jiang +2 位作者 jian-xin xie Yong-hua Li Li-juan Yue 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期641-651,共11页
The effects of Ni content(0–2.1wt%)on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys were investigated,and the corresponding mechanisms of influence were analyzed.The results show that the amount... The effects of Ni content(0–2.1wt%)on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys were investigated,and the corresponding mechanisms of influence were analyzed.The results show that the amount of precipitated phase increases in the cast alloys with increasing Ni content.When the Ni content is 0.45wt%or 0.98wt%,needle-like Be_(21)Ni_5 phases form in the grains and are mainly distributed in the interdendritic regions.When the Ni content is 1.5wt%or greater,a large number of needle-like precipitates form in the grains and chain-like Be_(21)Ni_5 and Be Ni precipitates form along the grain boundaries.The addition of Ni can substantially refine the cast and solid-solution microstructures of Cu-0.4wt%Be alloys.The hindering effects of both the dissolution of Ni into the matrix and the formation of Be–Ni precipitates on grain-boundary migration are mainly responsible for refining the cast and solid-solution microstructures of Cu-0.4wt%Be alloys.Higher Ni contents result in finer microstructures;however,given the precipitation characteristics of Be–Ni phases and their dissolution into the matrix during the solid-solution treatment,the upper limit of the Ni content is 1.5wt%–2.1wt%. 展开更多
关键词 beryllium-copper alloys ALLOYING Ni content microstJ-ucture solid-solution treatment
下载PDF
Effect of strain rate on the compressive deformation behaviors of lotus-type porous copper 被引量:4
9
作者 Xin-hua Liu Hai-you Huang jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第7期687-695,共9页
Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to th... Lotus-type porous copper was fabricated by unidirectional solidification, and compressive experiments were subsequently conducted in the strain rate range of 10-3-2400 s-1 with the compressive direction parallel to the pores. A GLEEBLE-1500 thermal-mechanical simulation system and a split Hopkinson pressure bar (SHPB) were used to investigate the effect of strain rate on the compressive deforma-tion behaviors of lotus-type porous copper. The influence mechanism of strain rate was also analyzed by the strain-controlling method and by high-speed photography. The results indicated that the stress-strain curves of lotus-typed porous copper consist of a linear elastic stage, a plateau stage, and a densification stage at various strain rates. At low strain rate (〈1.0 s^-1), the strain rate had little influence on the stress-strain curves; but when the strain rate exceeded 1.0 s^-1, it was observed to strongly affect the plateau stage, showing obvious strain-rate-hardening characteristics. Strain rate also influenced the densification initial strain. The densification initial strain at high strain rate was less than that at low strain rate. No visible inhomogeneous deformation caused by shockwaves was observed in lotus-type porous copper during high-strain-rate deformation. However, at high strain rate, the bending deformation characteristics of the pore walls obviously differed from those at low strain rate, which was the main mechanism by which the plateau stress exhibited strain-rate sensitivity when the strain rate exceeded a certain value and exhibited less densification initial strain at high strain rate. 展开更多
关键词 porous materials COPPER directional solidification strain rate sensitivity deformation modes stress-strain curves
下载PDF
Formation mechanism and control of aluminum layer thickness fluctuation in embedded aluminum-steel composite sheet produced by cold roll bonding process 被引量:5
10
作者 Chun-yang WANG Yan-bin JIANG +3 位作者 jian-xin xie Sheng XU De-jing ZHOU Xiao-jun ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第5期1011-1018,共8页
The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigate... The influences of rolling reduction and aluminum sheet initial thickness(AIT)on the thickness fluctuation of aluminum layer(TFA)of embedded aluminum?steel composite sheet produced by cold roll bonding were investigated,the formation mechanism of TFA was analyzed and method to improve the thickness uniformity of the aluminum layer was proposed.The results showed that when the reduction increased,TFA increased gradually.When the reduction was lower than40%,AIT had negligible effect on the TFA,while TFA increased with the decrease of AIT when the reduction was higher than40%.The non-uniformities of the steel surface deformation and the interfacial bonding extent caused by the work-hardened steel surface layer,were the main reasons for the formation of TFA.Adopting an appropriate surface treatment can help to decrease the hardening extent of the steel surface for improving the deformation uniformity during cold roll bonding process,which effectively improved the aluminum thickness uniformity of the embedded aluminum/steel composite sheets. 展开更多
关键词 aluminum.steel composite sheet cold roll bonding work-hardened surface layer thickness fluctuation
下载PDF
Effect of Cr content on microstructure and properties of aged Cu−Cr−P alloys 被引量:6
11
作者 Jian WANG Hong-tao ZHANG +1 位作者 Hua-dong FU jian-xin xie 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第1期232-242,共11页
The role of Cr in affecting the precipitates and the properties of aged Cu−Cr−P alloys was investigated and discussed.The results show that there are mainly three sizes of Cr phase in aged Cu−Cr−P alloys,among them,th... The role of Cr in affecting the precipitates and the properties of aged Cu−Cr−P alloys was investigated and discussed.The results show that there are mainly three sizes of Cr phase in aged Cu−Cr−P alloys,among them,the nano-sized Cr phase plays an important role in the strength of Cu−Cr−P alloys.The strengthening effect of Cr phase(less than 5 nm)with FCC structure completely coherent with the matrix is calculated to be about 200 MPa on the basis of dislocation cut-through mechanism.The strengthening effect of Cr phase(10−20 nm)with BCC structure incoherent with the matrix is calculated to be about 100 MPa on the basis of the Orowan dislocation bypass mechanism.The increase of Cr content changes the number and size of nano-sized Cr phase,which causes the mechanical properties of the Cu−Cr−P alloys to increase first and then decrease.The tensile strength of Cu−0.36Cr−0.01P alloy is 572 MPa and its electrical conductivity is 80%IACS after solid solution treatment at 980°C for 2 h followed by 95%cold rolling and then aging treatment at 450°C for 1 h. 展开更多
关键词 Cu−Cr−P alloy Cr content multiscale precipitates
下载PDF
Effects of Fe content on the microstructure and properties of CuN i10FeM n1 alloy tubes fabricated by HCCM horizontal continuous casting 被引量:3
12
作者 Yan-bin Jiang Jun Xu +1 位作者 Xin-hua Liu jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第4期449-457,共9页
Heating-cooling combined mold(HCCM) horizontal continuous casting technology developed by our research group was used to produce high axial columnar-grained CuN i10 FeM n1 alloy tubes with different Fe contents. The... Heating-cooling combined mold(HCCM) horizontal continuous casting technology developed by our research group was used to produce high axial columnar-grained CuN i10 FeM n1 alloy tubes with different Fe contents. The effects of Fe content(1.08wt%–2.01wt%) on the microstructure, segregation, and flushing corrosion resistance in simulated flowing seawater as well as the mechanical properties of the alloy tubes were investigated. The results show that when the Fe content is increased from 1.08wt% to 2.01wt%, the segregation degree of Ni and Fe elements increases, and the segregation coefficient of Ni and Fe elements falls from 0.92 to 0.70 and from 0.92 to 0.63, respectively. With increasing Fe content, the corrosion rate of the alloy decreases initially and then increases. When the Fe content is 1.83wt%, the corrosion rate approaches the minimum and dense, less-defect corrosion films, which contain rich Ni and Fe elements, form on the surface of the alloy; these films effectively protect the α-matrix and reduce the corrosion rate. When the Fe content is increased from 1.08wt% to 2.01wt%, the tensile strength of the alloy tube increases from 204 MPa to 236 MPa, while the elongation to failure changes slightly about 46%, indicating the excellent workability of the CuNi10FeMn1 alloy tubes. 展开更多
关键词 copper nickel alloys iron content CASTING SEGREGATION mechanical properties corrosion resistance
下载PDF
Effects of Ni content on microstructure and properties of aged Cu−0.4Be alloy 被引量:3
13
作者 Yan-bin JIANG Tong-tong ZHANG +3 位作者 Yu LEI Shuang-jiang HE Xin-hua LIU jian-xin xie 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期679-691,共13页
The effects of Ni content(0−2.10 wt.%)on the precipitated phase,strength and electrical conductivity of Cu−0.4wt.%Be alloy were investigated,and the influencing mechanism was analyzed.The results showed that the addit... The effects of Ni content(0−2.10 wt.%)on the precipitated phase,strength and electrical conductivity of Cu−0.4wt.%Be alloy were investigated,and the influencing mechanism was analyzed.The results showed that the addition of Ni promoted the precipitation of strengthening phase in the alloy and remarkably enhanced the strengthening effect.When the Ni content was increased from 0 to 2.10 wt.%,the strength of the aged alloy initially increased and then decreased,and approached the maximum when the Ni content was 1.50 wt.%.The peak-aging parameters of the alloy containing 1.50 wt.%Ni were the aging temperature of 400℃ and the aging time of 60 min,where the tensile strength and yield strength of the aged alloy were 611 and 565 MPa,respectively,which were 2.8 times and 6.1 times those of the alloy without Ni.The electrical conductivity of the alloy with Ni increased with the aging time,and decreased with the increase of Ni content.With an increase of the aging time at 400℃,phase transition sequence of the Cu−0.4Be−1.5Ni alloy wasγ″phase→γ′phase→γphase.For the aging time of 60 min,a large number of dispersed nano-scale coherentγ″phase andγ′phase formed in the alloy with a remarkable strengthening effect,which was mainly responsible for the high strength of the alloy. 展开更多
关键词 Cu−Be alloy ALLOYING phase transformation microstructure mechanical properties electrical conductivity
下载PDF
Microstructure evolution and mechanical properties of Cu-0.36Be-0.46Co alloy fabricated by heating-cooling combined mold horizontal continuous casting during cold rolling 被引量:3
14
作者 Yan-bin JIANG Tong-tong ZHANG +6 位作者 Yu LEI Xin-hua LIU Yang CAO jian-xin xie Bing ZHAO Yong-hua LI Chuan-rong JIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期958-971,共14页
Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical... Cu-0.36 wt.%Be-0.46 wt.%Co alloy plate with 300 mm in width and 10 mm in thickness prepared by heating-cooling combined mold(HCCM) horizontal continuous casting was cold rolled. Microstructure evolution and mechanical properties of the alloy as well as its deformation mechanism were investigated. The results showed that the as-cast alloy plate had columnar grains along the length direction, good surface quality and elongation of 35%, which was directly large-reduction cold rolled without surface treatment, and the accumulative cold rolling reduction reached 98%. When the reduction was small(20%), numerous dislocations and dislocation cells formed, and the deformation mechanism was dislocation slip. When the reduction was 40%, deformation twins appeared, and interactions between twins and dislocation cells induced strip-like dislocation cells. When the reduction exceeded 60%, shear bands formed and apparent crystal rotation in the micro-region happened. Further increasing the reduction, the amount of the shear bands rose and they interacted with each other, which refined the grains apparently. The tensile strength and hardness increased from 353 MPa and HV 119 of the as-cast alloy to 625 MPa and HV 208 with 95% reduction, respectively, and the elongation reduced from 35% to 7.6%. A process of HCCM horizontal continuous casting-cold rolling can work as a novel compact method to fabricate Cu-Be alloy sheet. 展开更多
关键词 HCCM horizontal continuous casting copper-beryllium alloy ROLLING microstructure mechanical properties
下载PDF
Effect of continuous induction annealing on the microstructure and mechanical properties of copper-clad aluminum flat bars 被引量:1
15
作者 Xin-hua Liu Yan-bin Jiang +1 位作者 Hong-jie Zhang jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1427-1436,共10页
Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding... Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the fiat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460℃ for 5 s, 480℃ for 3 s, or 500℃ for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500℃ for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500℃ for 1-5 s, a continuous interracial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interracial layer consisted primarily of a Cu9A14 layer and a CuA12 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500℃ for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform. 展开更多
关键词 metal cladding copper-clad aluminum ANNEALING interfaces mechanical properties
下载PDF
Improved cold rolling workability of warm rolled Fe?6.5wt%Si electrical steel with columnar grains by annealing 被引量:1
16
作者 Yuan-ke Mo Zhi-hao Zhang +2 位作者 jian-xin xie Hua-dong Fu Hong-jiang Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1171-1182,共12页
The effects of annealing temperature(with the annealing time being constant at 1 h) on the microstructure, ordering, residual stress, mechanical properties, and subsequent cold rolling workability of Fe-6.5wt%Si ele... The effects of annealing temperature(with the annealing time being constant at 1 h) on the microstructure, ordering, residual stress, mechanical properties, and subsequent cold rolling workability of Fe-6.5wt%Si electrical steel with columnar grains were investigated, where the steel was warm rolled at 500℃ with a reduction of 95%. The results show that recrystallization began to occur in the sample annealed at 575℃ and that full recrystallization occurred in the sample annealed at 625℃. When the annealing temperature was 500℃ or greater, the extent of reordering in the sample was high, which reduced the room-temperature plasticity. However, annealing at temperatures below 300℃ did not significantly reduce the residual tensile stress on the edge of the warm rolled samples. Considering the comprehensive effects of annealing temperature on the recrystallization, reordering, residual stress, and mechanical properties of the warm rolled Fe-6.5wt%Si electrical steel with columnar grains, the appropriate annealing temperature range is 300℃-400℃. Unlike the serious edge cracks that appeared in the sample after direct cold rolling, the annealed samples could be cold rolled to a total reduction of more than 71.4% without the formation of obvious edge cracks, and bright-surface Fe-6.5wt%Si electrical steel strips with a thickness less than 0.1 mm could be fabricated by cold rolling. 展开更多
关键词 electrical steel cold rolling ANNEALING mechanical properties WORKABILITY
下载PDF
Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling 被引量:1
17
作者 Xi-yong Wang Xue-feng Liu +1 位作者 Wen-jiang Zou jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第12期1170-1175,共6页
Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, ... Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%. 展开更多
关键词 copper foils ROLLING SURFACES gradient structure fatigue of materials
下载PDF
Severe lumbar spinal stenosis combined with Guillain-Barrésyndrome:A case report 被引量:1
18
作者 Dan-Feng Xu Bing Wu +2 位作者 Jin-Xin Wang Jian Yu jian-xin xie 《World Journal of Clinical Cases》 SCIE 2021年第5期1096-1102,共7页
BACKGROUND Guillain-Barrésyndrome(GBS)is a rare disorder that typically presents with ascending weakness,pain,paraesthesias,and numbness,which mimic the findings in lumbar spinal stenosis.Here,we report a case of... BACKGROUND Guillain-Barrésyndrome(GBS)is a rare disorder that typically presents with ascending weakness,pain,paraesthesias,and numbness,which mimic the findings in lumbar spinal stenosis.Here,we report a case of severe lumbar spinal stenosis combined with GBS.CASE SUMMARY A 70-year-old man with a history of lumbar spinal stenosis presented to our emergency department with severe lower back pain and lower extremity numbness.Magnetic resonance imaging confirmed the diagnosis of severe lumbar spinal stenosis.However,his symptoms did not improve postoperatively and he developed dysphagia and upper extremity numbness.An electromyogram was performed.Based on his symptoms,physical examination,and electromyogram,he was diagnosed with GBS.After 5 d of intravenous immunoglobulin(0.4 g/kg/d for 5 d)therapy,he gained 4/5 of strength in his upper and lower extremities and denied paraesthesias.He had regained 5/5 of strength in his extremities when he was discharged and had no symptoms during follow-up.CONCLUSION GBS should be considered in the differential diagnosis of spinal disorder,even though magnetic resonance imaging shows severe lumbar spinal stenosis.This case highlights the importance of a careful diagnosis when a patient has a history of a disease and comes to the hospital with the same or similar symptoms. 展开更多
关键词 Lumbar spinal stenosis Guillain-Barrésyndrome Lower back pain Paraesthesias DIAGNOSE Case report
下载PDF
Effect of compression direction on the dynamic recrystallization behavior of continuous columnar-grained CuNi10Fe1Mn alloy 被引量:1
19
作者 Yong-kang Liu Hai-you Huang jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第8期851-859,共9页
The dynamic recrystallization(DRX) behavior of continuous columnar-grained(CCG) Cu Ni10Fe1 Mn alloy was investigated by hot compression along the solidification direction(SD) and perpendicular to the solidificat... The dynamic recrystallization(DRX) behavior of continuous columnar-grained(CCG) Cu Ni10Fe1 Mn alloy was investigated by hot compression along the solidification direction(SD) and perpendicular to the solidification direction(PD). Specimens were compressed to a true strain of 0.8 at temperatures ranging from 25°C to 900°C and strain rates ranging from 0.01 to 10 s-1. The results indicate that DRX nucleation at grain boundaries(GBs) and DRX nucleation at slip bands(SBs) are the two main nucleation modes. For SD specimens, C-shaped bending and zig-zagging of the GBs occurred during hot compression, which made DRX nucleation at the GBs easier than that at the SBs. When ln Z ≤ 37.4(Z is the Zener–Hollomon parameter), DRX can occur in SD specimens with a critical temperature for the DRX onset of;50°C and a thermal activated energy(Q) of 313.5 k J·mol-1. In contrast, in PD specimens, the GBs remained straight, and DRX nucleation occurred preferentially at the SBs. For PD specimens, the critical temperature is about 700°C, Q is 351.7 k J·mol-1, and the occurrence condition of DRX is ln Z ≤ 40.1. The zig-zagging of GB morphology can significantly reduce the nucleation energy at the GBs; as a result, DRX nucleation occurs more easily in SD specimens than in PD specimens. 展开更多
关键词 copper–nickel alloys columnar grains compressive d
下载PDF
Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy 被引量:3
20
作者 Ji-li Liu Hai-you Huang jian-xin xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1157-1166,共10页
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ... The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments. 展开更多
关键词 copper aluminum manganese alloys shape memory effect columnar grains aging bainite superelasticity
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部