Internet of Things(IoT)technology is widely used in various fields,and its application in elderly care services has been highlighted in recent years.This study aims to explore how IoT technology can improve the effici...Internet of Things(IoT)technology is widely used in various fields,and its application in elderly care services has been highlighted in recent years.This study aims to explore how IoT technology can improve the efficiency of group-based elderly care services.The concept,characteristics,and current application status of IoT technology in elderly care services were introduced.Secondly,the characteristics and needs of group elderly care services were analyzed,including advantages and challenges,as well as the expectations and needs of the elderly for elderly care services.The evaluation methods and future development directions of IoT technology in improving the efficiency of group elderly care services were discussed,including data collection and analysis methods,selection and measurement of efficiency evaluation indicators,challenges,and development directions.展开更多
There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power.Nanostructured conducting poly...There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power.Nanostructured conducting polymers have emerged as promising candidates for this technology due to their excellent stability with low redox potential,high conductivity,and selectivity endowed by chemical functionalization.However,it remains challenging to develop cost-effective and large-scale assembly approaches for functionalized conducting polymers in the practical fabrication of electronic devices.Here,we reported a straightforward waferscale assembly of nanostructured hexafluoroisopropanol functionalized poly(3,4-ethylenedioxythiophene)(PEDOT-HFIP)on smooth substrates.This approach is template-free,solution-processed,and adaptable to conductive and nonconductive substrates.By this approach,the nanostructured PEDOT-HFIPs could be easily integrated onto interdigitated electrodes with intimate ohmic contact.At the optimized space-to-volume ratio,we demonstrated a low-power,sensitive,and selective nerve agent sensing technology using this platform by detecting sarin vapor with a limit of detection(LOD)of 10 ppb and signal strength of 400 times the water interference at the same concentration,offering significant advantages over existing similar technologies.We envision that its easy scale-up,micro size,small power consumption,and combination of high sensitivity and selectivity make it attractive for various wearable platforms.展开更多
基金National Innovation and Entrepreneurship Training Project“Time Bay-A Group Elderly Care Service Platform Based on Internet of Things Technology”(S202013836008X)Chongqing Education Commission Science and Technology Research Program Youth Project 2021(KJQN202105501)。
文摘Internet of Things(IoT)technology is widely used in various fields,and its application in elderly care services has been highlighted in recent years.This study aims to explore how IoT technology can improve the efficiency of group-based elderly care services.The concept,characteristics,and current application status of IoT technology in elderly care services were introduced.Secondly,the characteristics and needs of group elderly care services were analyzed,including advantages and challenges,as well as the expectations and needs of the elderly for elderly care services.The evaluation methods and future development directions of IoT technology in improving the efficiency of group elderly care services were discussed,including data collection and analysis methods,selection and measurement of efficiency evaluation indicators,challenges,and development directions.
基金financial support from the National Natural Science Foundation of China(Nos.21474014 and 22175111)Z.G.thanks financial support from the National Natural Science Foundation of China(No.21704013)+1 种基金China Postdoctoral Science Foundation(No.2017M611416)R.B.W.thanks for financial support from the National Postdoctoral Program for Innovative Talents(No.BX201700044).
文摘There is a great interest in developing microelectronic devices based on nanostructured conducting polymers that can selectively electro-couple analytes at high sensitivity and low power.Nanostructured conducting polymers have emerged as promising candidates for this technology due to their excellent stability with low redox potential,high conductivity,and selectivity endowed by chemical functionalization.However,it remains challenging to develop cost-effective and large-scale assembly approaches for functionalized conducting polymers in the practical fabrication of electronic devices.Here,we reported a straightforward waferscale assembly of nanostructured hexafluoroisopropanol functionalized poly(3,4-ethylenedioxythiophene)(PEDOT-HFIP)on smooth substrates.This approach is template-free,solution-processed,and adaptable to conductive and nonconductive substrates.By this approach,the nanostructured PEDOT-HFIPs could be easily integrated onto interdigitated electrodes with intimate ohmic contact.At the optimized space-to-volume ratio,we demonstrated a low-power,sensitive,and selective nerve agent sensing technology using this platform by detecting sarin vapor with a limit of detection(LOD)of 10 ppb and signal strength of 400 times the water interference at the same concentration,offering significant advantages over existing similar technologies.We envision that its easy scale-up,micro size,small power consumption,and combination of high sensitivity and selectivity make it attractive for various wearable platforms.