A research concerning the coupling conditions of gas leakage through suction valves and capacity regulation is performed in an industrial reciprocating compressor.Both internal flow and thermodynamic characteristic ar...A research concerning the coupling conditions of gas leakage through suction valves and capacity regulation is performed in an industrial reciprocating compressor.Both internal flow and thermodynamic characteristic are discussed in detail.The results show that the capacity of compressor can be regulated steplessly by controlling suction valve closure moment.And then the quantitative relationship between the capacity load and the closing angle of suction valve is revealed.The capacity load and valve leakage rate show obvious different features in P-V diagrams,which makes it easier to define appropriate features for detecting cracked or broken reciprocating compressor valves under varying load conditions.A set of curves of compression work and discharge gas mass are obtained and a method for rating thermal performance of a compressor is presented using these curves.展开更多
基金the National Natural Science Foundation of China(No.52101343)State Key Laboratory of Compressor Technology(An Hui Laboratory of Compressor Technology)(No.SKL-YSJ201808/SKL-YSJ201911)。
文摘A research concerning the coupling conditions of gas leakage through suction valves and capacity regulation is performed in an industrial reciprocating compressor.Both internal flow and thermodynamic characteristic are discussed in detail.The results show that the capacity of compressor can be regulated steplessly by controlling suction valve closure moment.And then the quantitative relationship between the capacity load and the closing angle of suction valve is revealed.The capacity load and valve leakage rate show obvious different features in P-V diagrams,which makes it easier to define appropriate features for detecting cracked or broken reciprocating compressor valves under varying load conditions.A set of curves of compression work and discharge gas mass are obtained and a method for rating thermal performance of a compressor is presented using these curves.