In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tens...In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.展开更多
The paper proposes a topology optimization method for 1D phononic structures to minimize the tangential component of particle velocity at the objective boundary.The tangential derivative of the boundary integral equat...The paper proposes a topology optimization method for 1D phononic structures to minimize the tangential component of particle velocity at the objective boundary.The tangential derivative of the boundary integral equation(TDBIE)is employed for the evaluation of the objective function involves the tangential derivative quantities.The topological derivative is derived through the adjoint method and the Neumann boundary condition of the adjoint field is obtained using the TDBIE.The average topological derivative which is obtained by calculating the average value of the topological derivative in each layer of design domains,is employed for the updating of the level set function.Numerical implementations demonstrate the proposed method is effective for the design of the 1D phononic crystals with the objective function involving tangential derivative quantities.展开更多
基金funded by the National Natural Science Foundation of China(Grant Number 52075361)Shanxi Province Science and Technology Major Project(Grant Number 20201102003)+3 种基金Lvliang Science and Technology Guidance Special Key R&D Project(Grant Number 2022XDHZ08)National Natural Science Foundation of China(Grant Number 51905367)Shanxi Natural Science Foundation General Project(Grant Numbers 202103021224271,202203021211201)Shanxi Province Key Research and Development Plan(Grant Number 202102020101013).
文摘In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.
基金supported by the Fundamental Research Program of Shanxi Province(Grant No.202203021221053)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant No.2022SX-TD021)+3 种基金the National Natural Science Foundation of China(Grant Nos.52075361,and 52274222)the Lvliang Science and Technology Guidance Special Key R&D Project(Grant No.2022XDHZ08)the Major Science and Technology Project of Shanxi Province(Grant No.20201102003)the Key Research and Development Projects in Shanxi province(Grant No.201903D421030).
文摘The paper proposes a topology optimization method for 1D phononic structures to minimize the tangential component of particle velocity at the objective boundary.The tangential derivative of the boundary integral equation(TDBIE)is employed for the evaluation of the objective function involves the tangential derivative quantities.The topological derivative is derived through the adjoint method and the Neumann boundary condition of the adjoint field is obtained using the TDBIE.The average topological derivative which is obtained by calculating the average value of the topological derivative in each layer of design domains,is employed for the updating of the level set function.Numerical implementations demonstrate the proposed method is effective for the design of the 1D phononic crystals with the objective function involving tangential derivative quantities.