Photodynamic therapy with reactive oxygen species production is a prospective treatment to combat cancer stem cells(CSCs).However,the innate drawbacks,including short lifetime and diffusion distance of reactive oxygen...Photodynamic therapy with reactive oxygen species production is a prospective treatment to combat cancer stem cells(CSCs).However,the innate drawbacks,including short lifetime and diffusion distance of reactive oxygen species and hypoxia within solid tumors,have become bottlenecks for clinical applications of photodynamic therapy.Here,we develop a mitochondria-targeting hemicyanine-oleic acid conjugate(CyOA),which can self-assemble into supramolecular nanoparticles(NPs)without any exogenous excipients.CyOA is also shown for targeting the mitochondrial complex II protein succinate dehydrogenase to inhibit oxidative phosphorylation and reverse tumor hypoxia,resulting in 50.4-fold higher phototoxicity against breast cancer stem cells(BCSCs)compared to SO_(3)-CyOA NPs that cannot target to mitochondria.In 4T1 and BCSC tumor models,CyOA NPs achieve higher tumor inhibition and less lung metastasis nodules compared to the clinically used photosensitizer Hiporfin.This study develops a self-assembled small molecule that can serve as both oxidative phosphorylation inhibitor and photosensitizer for eradication of CSCs and treatment of solid tumors.展开更多
基金supported by the National Research and Development Program of China(2018YFA0208900,2020YFA0710700,and 2020YFA0211200)the National Science Foundation of China(82172757 and 31972927)+2 种基金the Program for HUST Academic Frontier Youth Team(2018QYTD01)the Scientific Research Foundation of HUST(3004170130)the HCP Program for HUST.
文摘Photodynamic therapy with reactive oxygen species production is a prospective treatment to combat cancer stem cells(CSCs).However,the innate drawbacks,including short lifetime and diffusion distance of reactive oxygen species and hypoxia within solid tumors,have become bottlenecks for clinical applications of photodynamic therapy.Here,we develop a mitochondria-targeting hemicyanine-oleic acid conjugate(CyOA),which can self-assemble into supramolecular nanoparticles(NPs)without any exogenous excipients.CyOA is also shown for targeting the mitochondrial complex II protein succinate dehydrogenase to inhibit oxidative phosphorylation and reverse tumor hypoxia,resulting in 50.4-fold higher phototoxicity against breast cancer stem cells(BCSCs)compared to SO_(3)-CyOA NPs that cannot target to mitochondria.In 4T1 and BCSC tumor models,CyOA NPs achieve higher tumor inhibition and less lung metastasis nodules compared to the clinically used photosensitizer Hiporfin.This study develops a self-assembled small molecule that can serve as both oxidative phosphorylation inhibitor and photosensitizer for eradication of CSCs and treatment of solid tumors.